Why do I insert 2015 anywhere I like? #2

Geometry Level 5

log 2 [ cos ( 2 π 2015 ) cos ( 4 π 2015 ) cos ( 6 π 2015 ) cos ( 4028 π 2015 ) ] = ? \large{\log_2 \left[\cos \left( \dfrac{2 \pi}{2015} \right) \cos \left( \dfrac{4 \pi}{2015} \right) \cos \left( \dfrac{6 \pi}{2015} \right) \dotsm \cos \left( \dfrac{4028 \pi}{2015} \right) \right]} = \ ?


Bonus : Generalize k = 0 2 n cos ( 2 k π 2 n + 1 ) \displaystyle \prod_{k=0}^{2n} \cos \left( \dfrac{2 k\pi}{2n+1} \right) in terms of n n with a proper derivation without using methods like Induction.

Try it's sister problem: Why do I insert 2015 anywhere I like? #1


The answer is -2014.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Otto Bretscher
Aug 29, 2015

Let m = 2 n + 1 m=2n+1 be an odd positive integer, and consider w = e 2 π i / m . w=e^{2\pi{i}/m}.

Now z m 1 = ( z 1 ) k = 1 m 1 ( z w k ) z^m-1=(z-1)\prod_{k=1}^{m-1}(z-w^k) . Substituting z = 1 z=-1 and simplifying a bit, we find that k = 1 m 1 ( 1 + w k ) = 1. \prod_{k=1}^{m-1}(1+w^k)=1.

Now k = 1 m 1 cos ( 2 k π m ) = k = 1 m 1 1 2 ( w k + w k ) = 1 2 m 1 k = 1 m 1 ( w k + w k ) \prod_{k=1}^{m-1}\cos\left(\frac{2k\pi}{m}\right)= \prod_{k=1}^{m-1}\frac{1}{2}(w^k+w^{-k})=\frac{1}{2^{m-1}} \prod_{k=1}^{m-1}(w^k+w^{-k}) = 1 2 m 1 k = 1 m 1 ( w 2 k + 1 ) = 1 2 m 1 k = 1 m 1 ( w k + 1 ) = 1 2 m 1 = \frac{1}{2^{m-1}} \prod_{k=1}^{m-1}(w^{2k}+1)= \frac{1}{2^{m-1}} \prod_{k=1}^{m-1}(w^{k}+1)=\frac{1}{2^{m-1}} .

The penultimate step follows from the fact that w 2 w^2 is a primitive m m th root of unity. The third step from the back follows from the fact that the product of the m m th roots of unity is 1, by Viete.

Or you can show that the expression inside the log is product of cosine of 1,2,3,... 2014 times pi/2015, then apply Chebyshev polynomials.

Pi Han Goh - 5 years, 9 months ago

Log in to reply

We all have our favourites, Comrade Pi. As you know, I love my roots of unity... (and by the way, the "product of cosine of 1,2,3,... 2014 times pi/2015" is going to be negative)

Otto Bretscher - 5 years, 9 months ago
Satyajit Mohanty
Aug 31, 2015

Let z = e i θ = x + i y z = e^{i\theta} = x+iy . Then:

cos ( ( 2 n + 1 ) θ ) = R e ( z 2 n + 1 ) = k = 0 n ( 2 n + 1 2 k ) x 2 ( n k ) + 1 ( i y ) 2 k \cos((2n+1)\theta) = Re(z^{2n+1}) = \displaystyle \sum_{k=0}^n \binom{2n+1}{2k} x^{2(n-k)+1} (iy)^{2k} = k = 0 n ( 1 ) k ( 2 n + 1 2 k ) x 2 ( n k ) + 1 ( 1 x 2 ) k = \displaystyle \sum_{k=0}^n (-1)^k \binom{2n+1}{2k} x^{2(n-k)+1} (1-x^2)^k

which we denote as f ( x ) f(x) . It's easy to see that:

f ( x ) = a 2 n + 1 x 2 n + 1 + + a 1 x 1 . . . ( 1 ) f(x) = a_{2n+1}x^{2n+1} + \ldots + a_1x^1 \quad ...(1)

where

a 1 = ( 1 ) n ( 2 n + 1 2 n ) = ( 1 ) n ( 2 n + 1 ) . . . ( 2 ) a_1 = (-1)^n \binom{2n+1}{2n} = (-1)^n (2n+1) \quad ...(2)

On the other hand, since cos ( ( 2 n + 1 ) θ ) = 1 2 ( z 2 n + 1 + 1 z 2 n + 1 ) = 1 + 1 2 ( z 2 n + 1 + 1 z 2 n + 1 2 ) \cos((2n+1)\theta) = \dfrac12 \left( z^{2n+1} + \dfrac{1}{z^{2n+1}} \right) = 1 + \dfrac12 \left( z^{2n+1} + \dfrac{1}{z^{2n+1}} -2 \right)

= 1 + 1 2 z 2 n + 1 ( z 2 n + 1 1 ) 2 = 1 + \dfrac{1}{2z^{2n+1}}(z^{2n+1} - 1)^2 and

( z 2 n + 1 1 ) 2 = k = 0 2 n ( z e 2 k π i 2 n + 1 ) 2 = k = 0 2 n ( z e 2 k π i 2 n + 1 ) ( z e 2 k π i 2 n + 1 ) (z^{2n+1} - 1)^2 = \displaystyle \prod_{k=0}^{2n} \left( z-e^{\frac{2k\pi i}{2n+1}} \right)^2 = \prod_{k=0}^{2n} \left(z-e^{\frac{2k\pi i}{2n+1}} \right) \left(z-e^{\frac{-2k\pi i}{2n+1}} \right)

= k = 0 2 n ( z 2 + 1 2 z cos ( 2 k π 2 n + 1 ) ) = \displaystyle \prod_{k=0}^{2n} \left( z^2 + 1 - 2z \cos \left( \dfrac{2k\pi}{2n+1} \right) \right)

We also have:

f ( x ) = 1 + 1 2 k = 0 2 n ( z + 1 z 2 cos ( 2 k π 2 n + 1 ) ) f(x) = 1 + \dfrac12 \prod_{k=0}^{2n} \left( z + \dfrac1z - 2 \cos \left( \dfrac{2k\pi}{2n+1} \right) \right)

= 1 + 2 2 n k = 0 2 n ( x 2 cos ( 2 k π 2 n + 1 ) ) . . . ( 3 ) = 1 + 2^{2n} \prod_{k=0}^{2n} \left( x - 2 \cos \left( \dfrac{2k\pi}{2n+1} \right) \right) \quad ...(3)

Now we compare the expressions ( 1 ) (1) and ( 3 ) (3) for f ( x ) f(x) . We see from ( 1 ) (1) that the constant term in ( 3 ) (3) is zero. Therefore:

2 2 n k = 0 2 n cos ( 2 k π 2 n + 1 ) = 1 k = 0 2 n cos ( 2 k π 2 n + 1 ) = 2 2 n 2^{2n} \prod_{k=0}^{2n} \cos \left( \dfrac{2k\pi}{2n+1} \right) = 1 \quad \Longrightarrow \prod_{k=0}^{2n} \cos \left( \dfrac{2k\pi}{2n+1} \right) = 2^{-2n}

Thus, in the problem, we are asked the value of:

log 2 [ k = 0 2014 cos ( 2 k π 2015 ) ] = log 2 ( 2 2014 ) = 2014 \log_2 \left[ \displaystyle \prod_{k=0}^{2014} \cos \left( \dfrac{2k\pi}{2015} \right) \right] = \log_2 (2^{-2014} ) = \boxed{-2014}

Ishan Singh
Sep 3, 2015

Lemma 1 : r = 1 n cos r π 2 n + 1 = 1 2 n \prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1} = \dfrac{1}{2^n}

Proof : Let, C = r = 1 n cos ( r π 2 n + 1 ) \displaystyle\text{C}=\prod_{r=1}^{n}\cos{\left(\dfrac{r\pi}{2n+1}\right)}

and

S = r = 1 n sin ( r π 2 n + 1 ) \displaystyle\text{S}=\prod_{r=1}^{n}\sin{\left(\dfrac{r\pi}{2n+1}\right)}

Now,

C S = ( sin π 2 n + 1 cos π 2 n + 1 ) ( sin 2 π 2 n + 1 cos 2 π 2 n + 1 ) ( sin n π 2 n + 1 cos n π 2 n + 1 ) \displaystyle \text{C}\cdot\text{S}=\left(\sin{\dfrac{\pi}{2n+1}} \cdot \cos{\dfrac{\pi}{2n+1}}\right) \cdot \left(\sin{\dfrac{2\pi}{2n+1}}\cdot\cos{\dfrac{2\pi}{2n+1}}\right)\cdot \ldots \cdot\left(\sin{\dfrac{n\pi}{2n+1}} \cdot \cos{\dfrac{n\pi}{2n+1}}\right)

C S = 1 2 n ( 2 sin π 2 n + 1 cos π 2 n + 1 ) ( 2 sin 2 π 2 n + 1 cos 2 π 2 n + 1 ) ( 2 sin n π 2 n + 1 cos n π 2 n + 1 ) \displaystyle \implies \text{C}\cdot\text{S}= \dfrac{1}{2^n} \left(2\sin{\dfrac{\pi}{2n+1}} \cdot \cos{\dfrac{\pi}{2n+1}}\right) \cdot \left(2\sin{\dfrac{2\pi}{2n+1}}\cdot\cos{\dfrac{2\pi}{2n+1}}\right)\cdot \ldots \cdot\left(2\sin{\dfrac{n\pi}{2n+1}} \cdot \cos{\dfrac{n\pi}{2n+1}}\right)

C S = 1 2 n sin 2 π 2 n + 1 sin 4 π 2 n + 1 sin 2 n π 2 n + 1 \displaystyle \implies \text{C}\cdot\text{S}= \dfrac{1}{2^n} \ \sin{\dfrac{2\pi}{2n+1}}\cdot\sin{\dfrac{4\pi}{2n+1}}\cdot \ldots \cdot\sin{\dfrac{2n\pi}{2n+1}}

{ sin ( 2 x ) = 2 sin ( x ) cos ( x ) } \displaystyle \{\because \sin(2x) = 2\sin (x) \cos (x) \}

C S = 1 2 n sin π 2 n + 1 sin 2 π 2 n + 1 sin n π 2 n + 1 { sin ( π x ) = sin ( x ) } \displaystyle \implies \text{C}\cdot\text{S}= \dfrac{1}{2^n} \ \sin{\dfrac{\pi}{2n+1}}\cdot\sin{\dfrac{2\pi}{2n+1}} \cdot \ldots \cdot \sin{\dfrac{n\pi}{2n+1}} \\\\ \{\because \sin(\pi-x)=\sin(x)\}

C S = 1 2 n S \displaystyle \implies \text{C}\cdot\text{S}= \dfrac{1}{2^n} \cdot \text{S}

since S 0 \text{S} \neq 0 ,

C = 1 2 n \therefore {\text{C}=\dfrac{1}{2^n}}

Lemma 2 : r = 1 2 n cos 2 r π 2 n + 1 = ( r = 1 n cos r π 2 n + 1 ) 2 \prod_{r=1}^{2n} \cos \dfrac{2r\pi}{2n+1} = \left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)^2

Proof : r = 1 2 n cos 2 r π 2 n + 1 = ( r = 1 n cos 2 r π 2 n + 1 ) ( r = n + 1 2 n cos 2 r π 2 n + 1 ) \displaystyle \prod_{r=1}^{2n} \cos \dfrac{2r\pi}{2n+1} = \left( \prod_{r=1}^{n} \cos \dfrac{2r\pi}{2n+1}\right) \cdot \left(\prod_{r=n+1}^{2n} \cos \dfrac{2r\pi}{2n+1}\right)

= ( 1 ) n ( r = 1 n cos 2 r π 2 n + 1 ) ( r = 1 n cos ( 2 r 1 ) π 2 n + 1 ) { cos ( π + x ) = cos ( x ) } \displaystyle = (-1)^n\left( \prod_{r=1}^{n} \cos \dfrac{2r\pi}{2n+1}\right) \cdot \left(\prod_{r=1}^{n} \cos \dfrac{(2r-1)\pi}{2n+1}\right) \ \{ \because \cos(\pi+x)=-\cos(x) \}

= ( 1 ) n r = 1 2 n cos r π 2 n + 1 \displaystyle = (-1)^n\prod_{r=1}^{2n}\cos \dfrac{r\pi}{2n+1}

= ( 1 ) n ( r = 1 n cos r π 2 n + 1 ) ( r = n + 1 2 n cos r π 2 n + 1 ) \displaystyle =(-1)^n\left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)\cdot\left(\prod_{r=n+1}^{2n} \cos \dfrac{r\pi}{2n+1}\right)

= ( 1 ) n ( r = 1 n cos r π 2 n + 1 ) ( r = 1 n cos ( n + r ) π 2 n + 1 ) \displaystyle = (-1)^n\left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)\cdot\left(\prod_{r=1}^{n} \cos \dfrac{(n+r)\pi}{2n+1}\right)

= ( 1 ) n ( r = 1 n cos r π 2 n + 1 ) ( r = 1 n cos ( 2 n + 1 r ) π 2 n + 1 ) ( r = 1 n f ( r ) = r = 1 n f ( n + 1 r ) ) \displaystyle =(-1)^n\left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)\cdot\left(\prod_{r=1}^{n} \cos \dfrac{(2n+1-r)\pi}{2n+1}\right) \ \left( \because \prod_{r=1}^{n} f(r) = \prod_{r=1}^{n}f(n+1-r)\right)

= ( r = 1 n cos r π 2 n + 1 ) ( r = 1 n cos r π 2 n + 1 ) = ( r = 1 n cos r π 2 n + 1 ) 2 { cos ( π x ) = cos x } \displaystyle =\left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)\cdot\left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right) = \left(\prod_{r=1}^{n} \cos \dfrac{r\pi}{2n+1}\right)^2 \ \{\because \cos(\pi-x) = \cos x \}

Combining the above two Lemmas, we have,

r = 0 2 n cos 2 r π 2 n + 1 = 1 2 2 n \displaystyle \prod_{r=0}^{2n} \cos \dfrac{2r\pi}{2n+1} = \dfrac{1}{2^{2n}}

log 2 [ r = 0 2014 cos ( 2 r π 2015 ) ] = log 2 ( 2 2014 ) = 2014 \therefore \log_2 \left[ \displaystyle \prod_{r=0}^{2014} \cos \left( \dfrac{2r\pi}{2015} \right) \right] = \log_2 (2^{-2014} ) = \boxed{-2014}

Let w = e 4 π i / n w=e^{4\pi i/n} where n n is odd, and let S = k = 1 n 1 cos ( 2 π k n ) S=\displaystyle \prod_{k=1}^{n-1} \cos\left(\dfrac{2\pi k}{n}\right)

Since cos ( θ ) = cos ( 2 π θ ) \cos(\theta)=\cos(2\pi-\theta) , we know that S S is always positive.

Now, with the identity 1 + w k = 2 cos ( 2 π k n ) |1+w^k|=2\left | \cos\left(\dfrac{2 \pi k}{n}\right)\right| that becomes to:

S = k = 1 n 1 1 + w k 2 = 1 + w 1 + w 2 1 + w ( n 1 ) 2 n 1 S=\displaystyle \prod_{k=1}^{n-1} \dfrac{|1+w^{k}|}{2}=\dfrac{|1+w||1+w^2|\cdots|1+w^{(n-1)}|}{2^{n-1}}

But also P ( x ) = x n 1 x 1 = ( x w ) ( x w 2 ) ( x w n 1 ) P(x)=\dfrac{x^n-1}{x-1}=(x-w)(x-w^2)\cdots(x-w^{n-1}) , that implies that x n 1 + x n 2 + + x + 1 = ( x w ) ( x w 2 ) ( x w n 1 ) x^{n-1}+x^{n-2}+\cdots+x+1=(x-w)(x-w^2)\cdots(x-w^{n-1}) . If we let x = 1 x=-1 we obtain: 1 = ( 1 w ) ( 1 w 2 ) ( 1 w n 1 ) 1=(-1-w)(-1-w^2)\cdots(-1-w^{n-1}) , or 1 = ( 1 + w ) ( 1 + w 2 ) ( 1 + w n 1 ) 1=(1+w)(1+w^2)\cdots(1+w^{n-1}) .

Finally, apply absolute value to both sides:

1 = 1 + w 1 + w 2 1 + w n 1 1=|1+w||1+w^2|\cdots|1+w^{n-1}|

So, the product is: S = 1 2 n 1 S=\dfrac{1}{2^{n-1}}

In this case n = 2015 n=2015 , so log 2 ( 2 2014 ) = 2014 \log_2(2^{-2014})=\boxed{-2014} .

Are you saying that k = 1 n 1 cos ( k π n ) = k = 1 n 1 cos ( 2 k π n ) \prod_{k=1}^{n-1}\cos\left(\frac{k\pi}{n}\right)=\prod_{k=1}^{n-1}\cos\left(\frac{2k\pi}{n}\right) for all odd n n ?

Otto Bretscher - 5 years, 9 months ago

Log in to reply

No, I missed a sign. I've updated my solution.

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

Log in to reply

Yes, that makes good sense now (upvoted)! Both of our solutions are based on the fact that e 4 π i / n e^{4\pi{i}/n} is a primitive n n th root of unity.

Otto Bretscher - 5 years, 9 months ago

Log in to reply

@Otto Bretscher Thanks :D Your solution is also good, you are the master of the roots of unity. Also upvoted.

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

Log in to reply

@Alan Enrique Ontiveros Salazar Far from being a master in the field, I'm just an enthusiastic amateur ;)

Otto Bretscher - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...