Inspired by Calvin Lin - Why do I love 2015 so much 4

Algebra Level 5

P = n = 1 1008 2 n 2 n 1 \large{P= \left \lfloor \displaystyle \prod^{1008}_{n=1} \dfrac{2n}{2n-1} \right \rfloor}

Submit the value of 36 P 36P as your answer.


This problem is a part of this set .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 23, 2015

n = 1 1008 2 n 2 n 1 = 2 × 4 × 6 × . . . 2016 1 × 3 × 5 × . . . 2015 = 2 2016 ( 1008 ! ) 2 2016 ! Stirling’s approximation n ! 2 π n ( n e ) n 2 2016 × 2016 π ( 1008 e ) 2016 4032 π ( 2016 e ) 2016 = 1008 π = 56.273 36 P = 36 n = 1 1008 2 n 2 n 1 = 36 56.273 = 36 × 56 = 2016 \begin{aligned} \prod_{n=1}^{1008} \frac{2n}{2n-1} & = \frac{2\times 4 \times 6 \times ... 2016}{1\times 3 \times 5 \times ... 2015} \\ & = \frac{2^{2016}(1008!)^2}{2016!} \quad \quad \quad \quad \quad \quad \color{#3D99F6}{\text{Stirling's approximation } n! \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n} \\ & \approx \frac{2^{2016}\times 2016 \pi \left(\frac{1008}{e} \right)^{2016}}{\sqrt{4032 \pi} \left(\frac{2016}{e} \right)^{2016}} \\ & = \sqrt{1008 \pi} = 56.273 \\ \\ \Rightarrow 36P & = 36 \left \lfloor \prod_{n=1}^{1008} \frac{2n}{2n-1} \right \rfloor = 36 \left \lfloor 56.273 \right \rfloor = 36 \times 56 = \boxed{2016} \end{aligned}

Yup!! Stirling's approximation can also work.

Upvoted!!+1

Akshat Sharda - 5 years, 8 months ago

I have another method .,it is lengthy though

A Former Brilliant Member - 5 years, 8 months ago

Log in to reply

Can you tell in brief?

Akshat Sharda - 5 years, 8 months ago

Log in to reply

wait for some time I will write the solution ,

A Former Brilliant Member - 5 years, 8 months ago

Log in to reply

@A Former Brilliant Member Where is your solution ?

Akshat Sharda - 5 years, 6 months ago
Akshat Sharda
Sep 23, 2015

We have ,

= n = 1 1008 2 n 2 n 1 =\left \lfloor \displaystyle \prod^{1008}_{n=1} \dfrac{2n} {2n-1} \right \rfloor

= 2 1 × 4 3 × 6 5 × × 2016 2015 =\left \lfloor \frac{2}{1}×\frac{4}{3}× \frac{6}{5}×\ldots×\frac{2016}{2015} \right \rfloor

= ( 2 × 4 × 6 × × 2016 ) 2 2016 ! =\left \lfloor \frac{(2×4×6×\ldots×2016)^{2}}{2016!} \right \rfloor

= 2 2016 × 1008 ! 2 2016 ! =\left \lfloor 2^{2016}×\frac{1008!^{2}}{2016!} \right \rfloor

= 2 2016 × 1 ( 2016 1008 ) =\left \lfloor 2^{2016}×\frac{1}{2016 \choose 1008} \right \rfloor

Now we will apply the asymptotic properties for Central Binomial Coefficient:

( 2 n n ) 4 n π n {2n \choose n } \sim \frac {4^n}{\sqrt{\pi n}}

In this case, n = 1008 n=1008

= 2 2016 × 1 4 1008 1008 π =\left \lfloor 2^{2016}×\frac{1}{\frac{4^{1008}}{\sqrt{1008\pi}}} \right \rfloor

= 2 2016 × 1008 π 4 1008 =\left \lfloor 2^{2016}×\frac{\sqrt{1008\pi}}{4^{1008}} \right \rfloor

= 1008 π = 56 = P =\left \lfloor \sqrt{1008\pi} \right \rfloor=56=P

36 P = 36 56 = 2016 \Rightarrow 36P=36\cdot 56=\boxed{2016}

Very good, I am new this kind of mathematics. Can you please give me sources where I can learn this problems' topics (like Stirling approximation Central Binomial Coefficient)

Eziz Hudaykulyyev - 5 years, 5 months ago

Log in to reply

Saw your comment just now......I'm busy.....I'll tell you later.

Akshat Sharda - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...