Why not test your skills?

Algebra Level 4

( ( 5 ) 5 x 5 ) x 5 5 x = 3125 \huge \sqrt[5x]{{\left( \sqrt[x^5]{{(5)}^5}\right)}^{\sqrt[5]{x}}} = 3125
Find the real value of x x satisfying the real equation above.

The answer is of the form 5 a b 5^{-\dfrac{a}{b}} , where a a and b b are positive co-prime integers, then find the value of a + b a + b .

Note \text{Note} :- Here x { 1 , 0 , 1 } x \neq \{-1 , 0 , 1\}


This is one part of the set Fun with exponents


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ashish Menon
Apr 30, 2016

( ( 5 ) 5 x 5 ) x 5 5 x = 3125 5 5 x 5 × x 1 5 × 1 5 x = 5 5 5 x 5 + 1 5 1 = 5 5 5 x 29 5 = 5 5 Equating the powers : x 29 5 = 5 Raising power of 5 on both sides : x 29 = 5 5 Raising root of -29 on both sides : x = 5 5 29 a + b = 5 + 29 = 34 \begin{aligned} \huge \sqrt[5x]{{\left(\sqrt[x^5]{{\left(5\right)}^5}\right)}^{\sqrt[5]{x}}} & = \huge 3125\\ \\ \huge 5^{\tfrac{5}{x^5} × x^{\frac{1}{5}} × \tfrac{1}{5x}} & = \huge 5^5\\ \\ \huge 5^{x^{-5 + \frac{1}{5} - 1}} & = \huge 5^5\\ \\ \huge 5^{x^{-\frac{29}{5}}} & = \huge 5^5\\ \\ \text{Equating the powers}:-\\ \LARGE x^{-\tfrac{29}{5}} & = \LARGE 5\\ \\ \text{Raising power of 5 on both sides}:-\\ \\ \LARGE x^{-29} & = \LARGE 5^5\\ \\ \text{Raising root of -29 on both sides}:-\\ \LARGE x & = \LARGE 5^{-\tfrac{5}{29}}\\ \\ \Large \therefore a + b & = \Large 5 + 29\\ \\ & = \Large \boxed{34} \end{aligned}

34% got 34. Coincidence(as of 11:36 May 2, 2016 )

Abhiram Rao - 5 years, 1 month ago

L e t Y = 5 5 = 3125. S o t h e p r o b l e m r e d u c e s t o ( Y x 5 ) x 5 5 x = Y . ( Y x 5 ) x 5 5 x = ( Y x 5 ) x 1 5 5 x = Y 1 5 x 4 5 × x 5 = Y 1 . S i n c e t h e b a s e Y i s s a m e e q u a t i n g p o w e r s , 1 5 x 29 5 = 1 5 1 = x 29 5 S o x = 5 5 29 = 5 a b a + b = 34 Let ~ Y=5^5=3125. \ \ So\ the\ problem\ reduces\ to\ \huge \sqrt[5x]{{\left( \sqrt[x^5] {Y} \right)}^{\sqrt[5]{x}}} =Y .\\ \huge \sqrt[5x]{{\left( \sqrt[x^5] {Y} \right)}^{\sqrt[5]{x}}} = \left( \sqrt[x^5] {Y} \right)^{^{\dfrac{x^{\frac 1 5}}{5x} } } \\ =\Large Y^{^{\dfrac 1 {5x^{\frac 4 5} \times x^5} } }=Y^1.\\ Since\ the\ base\ Y\ is\ same\ equating\ powers,\\ \Large \dfrac 1 {5x^{\frac {29} 5} }=1\ \ \ \implies\ 5^{-1} =x^{^{\frac {29} 5}}\\ \Large So\ x=5^{^{ -\frac 5 {29} }} =5^{^{ - \frac a b }} \ \ \therefore\ a+b=\huge \ \ \ \color{#D61F06}{34}

Great I see that you have started substituting x in place of X. Why not start substituting y in place of Y. ;) Thanks for the solution :)

Ashish Menon - 5 years, 1 month ago

Log in to reply

Y was I named but the original problem has x so I did not change that to X.

Niranjan Khanderia - 5 years, 1 month ago

Log in to reply

Alright your call :) Are you really 88 yrs old, sir?

Ashish Menon - 5 years, 1 month ago

Log in to reply

@Ashish Menon Yes the year is 1928.

Niranjan Khanderia - 5 years, 1 month ago

Log in to reply

@Niranjan Khanderia A very experienced person of life ^^

Ashish Menon - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...