Will Sliding Rod ever Stop ? (Part 2)

Rigid uniform Rod 'AB' of mass 'M' and Length 'L' is pulled slightly ( Gently ) at the bottom at time t=0 . when it just reaches the horizontal ground. Then Velocities of End's Point's .

V A = a b ( g L ) V B = c d ( g L ) \displaystyle{ V }_{ A }=\sqrt { \cfrac { a }{ b } (gL) } \\ \\ { V }_{ B }=\sqrt { \cfrac { c }{ d } (gL) } .

Then Find The Value of a + b + c + d a+b+c+d

details and Assumptions

\bullet All Surfaces are Perfectly Smooth.

\bullet Rod May not Necessarily remain always in contact with Vertical wall.

\bullet a , b , c , d a,b,c,d all are positive integers , g c d ( a , b ) = 1 gcd(a,b)=1 , g c d ( c , d ) = 1 gcd(c,d)=1

This is Original
Try It's Easier Version First : Sliding Rod
Try more Deepanshu's Mechanics Blast


The answer is 44.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Satvik Pandey
Dec 28, 2014

First we have to find the angle at which the rod left contact with the vertical wall/

img img From the figure

V B C = l ω 2 { V }_{ BC }=\frac { l\omega }{ 2 }

V B C = l ω 2 s i n θ i ^ + l ω 2 c o s θ j ^ { V }_{ BC }=\frac { l\omega }{ 2 } sin\theta \hat { i } +\frac { l\omega }{ 2 } cos\theta \hat { j }

and V A C = l ω 2 s i n θ i ^ l ω 2 c o s θ j ^ { V }_{ AC }=-\frac { l\omega }{ 2 } sin\theta \hat { i } -\frac { l\omega }{ 2 } cos\theta \hat { j }

As V B C = V B V C { V }_{ BC }={ V }_{ B }-{ V }_{ C } and V A C = V A V C { V }_{ AC }={ V }_{ A }-{ V }_{ C }

or V C = V B V B C { V }_{ C }={ V }_{ B }-{ V }_{ BC }

So V C j ^ = l ω 2 c o s θ j ^ { V }_{ C }\hat { j } =-\frac { l\omega }{ 2 } cos\theta \hat { j } (considering velocity in vertical direction only. We are doing this because V B j ^ = 0 { V }_{ B }\hat { j } =0 )

Similarly we can get

V C i ^ = l ω 2 s i n θ i ^ { V }_{ C }\hat { i } =\frac { l\omega }{ 2 } sin\theta \hat { i } ............(4)

So V C = l ω 2 s i n θ i ^ l ω 2 c o s θ j ^ { V }_{ C }=\frac { l\omega }{ 2 } sin\theta \hat { i } -\frac { l\omega }{ 2 } cos\theta \hat { j }

Also from conservation of energy

m g l 2 ( 1 s i n θ ) = 1 2 ( m v 2 + I C ω 2 ) mg\frac { l }{ 2 } (1-sin\theta )=\frac { 1 }{ 2 } \left( m{ v }^{ 2 }+{ I }_{ C }{ \omega }^{ 2 } \right) ......................(1)

Also V C = ( l ω 2 ) 2 { V }_{ C }={ \left( \frac { l\omega }{ 2 } \right) }^{ 2 } (we can get this from eq(4))

Putting this in eq-1 we get

ω 2 = 3 g l ( 1 s i n θ ) { \omega }^{ 2 }=\frac { 3g }{ l } (1-sin\theta ) ............(2)

When the rod looses contact with the vertical rod the Normal force acting on Rod becomes 0. So no horizontal force act on the rod after the moment the rod left contact with vertical wall. So acceleration of the CoM of the rod in horizontal direction is 0.

So d d t ( V C i ^ ) = d d t ( l ω 2 s i n θ i ^ ) = 0 { \frac { d }{ dt } (V }_{ C }\hat { i } )=\frac { d }{ dt } \left( \frac { l\omega }{ 2 } sin\theta \hat { i } \right) =0

So d d θ ( 3 g l ( 1 s i n θ ) s i n θ ) d θ d t = 0 \frac { d }{ d\theta } \left( \sqrt { \frac { 3g }{ l } (1-sin\theta ) } sin\theta \right) \frac { d\theta }{ dt } =0\\

or d d θ ( ( 1 s i n θ ) s i n θ ) = 0 \frac { d }{ d\theta } \left( \sqrt { (1-sin\theta ) } sin\theta \right) =0

or c o s θ ( 1 s i n θ ) = s i n θ c o s θ 2 ( 1 s i n θ ) cos\theta \sqrt { (1-sin\theta ) } =\frac { sin\theta cos\theta }{ 2\sqrt { (1-sin\theta ) } }

So s i n θ = 2 3 sin\theta =\frac { 2 }{ 3 }

So at θ = a r c s i n ( 2 / 3 ) \theta=arcsin(2/3) , ω = g L \omega=\sqrt{\frac{g}{L}}

and V C = g l 3 i 5 g l 6 j { V }_{ C }=\frac{\sqrt{gl}}{3} { i } -\frac{\sqrt{5gl}}{6} { j }

Now

When the rod becomes horizontal point A will not have any vertical velocity. So vertical component of velocity of CoM is equal to angular velocity of point A about CoM. So being in opposite direction they cancel out. So remaining vector is the horizontal velocity of CoM. So velocity of pointA equal to the component of the horizontal velocity of the CoM.

So V A = g l 9 V_{A}=\sqrt { \frac { gl }{ 9 } }

Now further using conservation of energy we get

The initial velocity of the rod is l ω c o s ( ϕ 0 ) 2 = 5 g l 6 \frac { l\omega cos{ (\phi }_{ 0 }) }{ 2 } =\frac { \sqrt { 5gl } }{ 6 } where ϕ 0 \phi_{0} is the angle b/w rod and horizontal at the moment the rod looses contact with the vertical wall.

Initial potential of the rod is l s i n ϕ 0 2 = l 3 \frac{lsin\phi_{0}}{2}=\frac{l}{3}

Let v v' be the velocity of the CoM of the rod when it becomes horizontal.

So by the conservation of mechanical energy---

So I c ω 0 2 2 + m 2 ( 5 g l 6 ) 2 + m g l 3 = m v 2 2 + I c ω f 2 2 \frac { { I }_{ c }{ \omega }_{ 0 }^{ 2 } }{ 2 } +\frac { m }{ 2 } { \left( \frac { \sqrt { 5gl } }{ 6 } \right) }^{ 2 }+\frac { mgl }{ 3 } =\frac { m{ v' }^{ 2 } }{ 2 } +\frac { { I }_{ c }{ \omega }_{ f }^{ 2 } }{ 2 }

where ω 0 \omega_{ 0 } is the angular velocity of the rod when it looses contact with the vertical wall and ω f \omega_{ f } is the angular velocity of the rod when it become horizontal.

or m l 2 12 × ω 0 2 2 + m 2 ( 5 g l 6 ) 2 + m g l 3 = m v 2 2 + m l 2 12 × ω f 2 2 \frac { m{ l }^{ 2 } }{ 12 } \times \frac { { \omega }_{ 0 }^{ 2 } }{ 2 } +\frac { m }{ 2 } { \left( \frac { \sqrt { 5gl } }{ 6 } \right) }^{ 2 }+\frac { mgl }{ 3 } =\frac { m{ v' }^{ 2 } }{ 2 } +\frac { m{ l }^{ 2 } }{ 12 } \times \frac { { \omega }_{ f }^{ 2 } }{ 2 }

or 32 g l 36 = v 2 + l 2 ω f 2 12 \frac { 32gl }{ 36 } ={ v' }^{ 2 }+\frac { { l }^{ 2 }{ \omega }_{ f }^{ 2 } }{ 12 } .

When the rod becomes horizontal then the vertical component of velocity of point A(the point which was in contact with the ground) will be zero.

So is l ω f 2 2 = v \frac { l{ \omega }_{ f }^{ 2 } }{ 2 } ={ v' }

So ω f = 8 g 3 l { \omega }_{ f }=\sqrt { \frac { 8g }{ 3l } }

and v = l 2 8 g 3 l v'=\frac { l }{ 2 } \sqrt { \frac { 8g }{ 3l } }

velocity of point B is equal to total velocity of CoM+velocity of point B about CoM

So total velocity is

V C o M = l 2 8 g 3 l j ^ + g l 9 i ^ { V }_{ CoM }=-\frac { l }{ 2 } \sqrt { \frac { 8g }{ 3l } } \hat { j } +\sqrt { \frac { gl }{ 9 } } \hat { i } + ( l 2 ω f j ^ ) +\left( -\frac { l }{ 2 } { \omega }_{ f }\hat { j } \right)

or g l 9 i ^ 8 g l 3 j ^ \sqrt { \frac { gl }{ 9 } } \hat { i } -\sqrt { \frac { 8gl }{ 3 } } \hat { j }

it's magnitude will be 25 g l 9 \sqrt { \frac { 25gl }{ 9 } }

So V B = 25 g l 9 V_{B}=\sqrt { \frac { 25gl }{ 9 } } . :)

As Usual Very Nice Question., and Nice Solution Satvik Pandey

And It means Rod Really Never Stops Because of horizontal velocity !

Karan Shekhawat - 6 years, 5 months ago

Log in to reply

Thanks bro! :)

satvik pandey - 6 years, 5 months ago

Nicely Done ! How Much You want to rate This question ?

Deepanshu Gupta - 6 years, 5 months ago

Log in to reply

The present ratings are correct. It will be great if they increase up to 325-340 because this question is really tricky if someone has not solved 'sliding rod part-1'. Also the solution is quite long.

At least I can boast of solving a 305 points question. :D When I solved it the rating was 305 but after that it became 300. :(

How much you want to rate this. :)

satvik pandey - 6 years, 5 months ago

Log in to reply

:D , Thank You To decrease at-least 5 point's , Because I think there are many Good question which Deserves More Points then this question !
Specifically In this Question If One Used first IAOR to find angle of leaving contact and then Rest , Then I think it is not so long ! But Still Your approach is is more Realistic Physics if we once forget mathamatical aspect's and Time constrained !

And Yes That's why Provide Link For It's First Part too ! ¨ \ddot\smile

Deepanshu Gupta - 6 years, 5 months ago

Log in to reply

@Deepanshu Gupta :D

I think if there would have friction at the contact points then the problem would have reached 400+ points. :D

satvik pandey - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...