Without using l'hopital's rule 3

Calculus Level 1

lim x 0 sin 2 x + sin ( 2 x ) 3 x \large \lim_{x\to0} \frac{\sin^2 x + \sin (2x)}{3x}

Find the limit above (to 3 decimal places).

Bonus: Solve this question without using L'Hôpital's rule .


The answer is 0.67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Stephen Brown
Dec 20, 2017

Using the small-angle approximation sin x x \sin{x} \approx x for x x near 0 0 ,

sin 2 x + sin 2 x 3 x x 2 + 2 x 3 x = x + 2 3 \frac{\sin^2{x}+\sin{2x}}{3x} \approx \frac{x^2+2x}{3x} = \frac{x+2}{3}

lim x 0 sin 2 x + sin 2 x 3 x = lim x 0 x + 2 3 = 2 3 0.667 \lim_{x \rightarrow 0}\frac{\sin^2{x}+\sin{2x}}{3x} = \lim_{x \rightarrow 0}\frac{x+2}{3} = \frac{2}{3} \approx \boxed{0.667}

L = lim x 0 sin 2 x + sin ( 2 x ) 3 x = lim x 0 sin 2 x + 2 sin x cos x 3 x = lim x 0 sin x ( sin x + 2 cos x ) 3 x See note. = 1 ( 0 + 2 ( 1 ) ) 3 = 2 3 = 0.667 \begin{aligned} L & = \lim_{x \to 0} \frac {\sin^2 x + \sin (2x)}{3x} \\ & = \lim_{x \to 0} \frac {\sin^2 x + 2\sin x \cos x}{3x} \\ & = \lim_{x \to 0} \frac {{\color{#3D99F6}\sin x}(\sin x + 2\cos x)}{3{\color{#3D99F6}x}} & \small \color{#3D99F6} \text{See note.} \\ & = \frac {{\color{#3D99F6}1}(0 + 2(1))}3 \\ & = \frac 23 = \boxed{0.667} \end{aligned}


Note:

lim x 0 sin x x = lim x 0 x x 3 3 ! + x 5 5 ! . . . x By Maclaurin series = lim x 0 ( 1 x 2 3 ! + x 4 5 ! . . . ) = 1 \begin{aligned} \lim_{x \to 0} \frac {\color{#3D99F6}\sin x}x & = \lim_{x \to 0} \frac {\color{#3D99F6}x-\frac {x^3}{3!}+\frac{x^5}{5!}-...}x & \small \color{#3D99F6} \text{By Maclaurin series} \\ & = \lim_{x \to 0} \left(1-\frac {x^2}{3!}+\frac{x^4}{5!}-... \right) \\ & = \boxed{1} \end{aligned}

How can you find the Maclaurin series for sin x \sin{x} without knowing the value of lim x 0 sin x x \lim_{x\rightarrow 0} \frac{\sin{x}}{x} ?

James Wilson - 3 years, 5 months ago

Log in to reply

sin x = n = 1 ( 1 ) x 2 n + 1 ( 2 n + 1 ) ! \sin x = \displaystyle \sum_{n=1}^\infty \frac {(-1)x^{2n+1}}{(2n+1)!} is true for all x x .

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

Yes, but my point is you should show that the Maclaurin series can be computed without knowing lim x 0 sin x x \lim_{x\rightarrow 0} \frac{\sin{x}}{x} . I suppose this could be done by using sin x = e i x e i x 2 i \sin{x}=\frac{e^{ix}-e^{-ix}}{2i} . But then you would have to find a route to prove Euler's identity without using the fact that lim x 0 sin x x \lim_{x\rightarrow 0} \frac{\sin{x}}{x} .

James Wilson - 3 years, 5 months ago

Log in to reply

@James Wilson Also, you have a couple of typos in your summation.

James Wilson - 3 years, 5 months ago

Log in to reply

@James Wilson Just letting you know

James Wilson - 3 years, 5 months ago

@James Wilson When you take the derivative of sin x \sin{x} using the limit of the difference quotient, you end up using the fact that lim h 0 sin h h = 1 \lim_{h\rightarrow 0}\frac{\sin{h}}{h}=1 .

James Wilson - 3 years, 5 months ago
Geoff Taylor
Dec 30, 2017

Converting l i m x 0 s i n 2 x + s i n ( 2 x ) 3 x = l i m x 0 s i n 2 x + 2 s i n x c o s x 3 x \underset { x\rightarrow 0 }{ lim } \frac { { sin }^{ 2 }x+sin(2x) }{ 3x } =\underset { x\rightarrow 0 }{ lim } \frac { { sin }^{ 2 }x+2sinxcosx }{ 3x }

Using the limit properties we obtain 1 3 l i m x 0 sin x x × l i m x 0 ( s i n x + 2 c o s x ) \frac { 1 }{ 3 } \underset { x\rightarrow 0 }{ lim } \frac { \sin { x } }{ x } \times \underset { x\rightarrow 0 }{ lim } (sinx+2cosx)

this simplifies to 1 3 × 1 × 2 = 2 3 0.67 \frac { 1 }{ 3 } \times 1\times 2=\frac { 2 }{ 3 } \approx 0.67

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...