Would You Like a Cube With That?

Algebra Level 2

a 3 + b 3 = 2593080 , a + b = 210 , a b = ? \large a^3 + b^3 = 2593080, \ \ a + b = 210, \ \ \ \ \ ab = \ ?


The answer is 10584.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

11 solutions

Ikkyu San
Apr 26, 2015

a 3 + b 3 = 2593080 a^3 + b^3 = 2593080 a + b = 210 \color{#3D99F6}{a + b = 210} a 3 + b 3 = 2593080 a^3+b^3=2593080

( a + b ) ( a 2 a b + b 2 ) = 2593080 (\color{#3D99F6}{a+b})(a^2-ab+b^2)=2593080

( 210 ) ( a 2 a b + b 2 ) = 2593080 (\color{#3D99F6}{210})(a^2-ab+b^2)=2593080

a 2 a b + b 2 = 12348 a^2-ab+b^2=12348

a 2 a b + 3 a b + b 2 = 12348 + 3 a b a^2-ab\color{#D61F06}{+3ab}+b^2=12348\color{#D61F06}{+3ab}

a 2 + 2 a b + b 2 = 12348 + 3 a b a^2+2ab+b^2=12348+3ab

( a + b ) 2 = 12348 + 3 a b (\color{#3D99F6}{a+b})^2=12348+3ab

210 2 = 12348 + 3 a b \color{#3D99F6}{210}^2=12348+3ab

44100 = 12348 + 3 a b 44100=12348+3ab

31752 = 3 a b 31752=3ab

a b = 10584 \boxed{ab=10584}

Moderator note:

Nice use of colours to visualize your work. Splendid!

Nice solution! upvoted!

Sravanth C. - 6 years, 1 month ago
Sravanth C.
Apr 25, 2015

There is another way to solve this, it is as follows.

we know that, ( a + b ) 3 = a 3 + b 3 + 3 a b ( a + b ) { (a+b) }^{ 3 }={ a }^{ 3 }+{ b }^{ 3 }+3ab(a+b)

Substituting the values in the equation above we get, ( 210 ) 3 = 2593080 + 3 a b ( 210 ) { (210) }^{ 3 }=2593080+3ab(210)

Or, 9261000 2593080 = 3 a b ( 210 ) 9261000-2593080=3ab(210)

Or, 6667920 = 3 a b ( 210 ) 6667920=3ab(210)

Or, 3 a b = 6667920 210 = 31752 \displaystyle 3ab=\frac { 6667920 }{ 210 } =31752

Or, a b = 31752 3 \displaystyle ab=\frac { 31752 }{ 3 }

Or, a b = 10584 ab= \boxed{10584}

Moderator note:

Nice way of isolating the variables. Great work!

G r e a t ! Great!

Ikkyu San - 6 years, 1 month ago

Log in to reply

Thank you!

Sravanth C. - 6 years, 1 month ago

Sir, Please take this suggestion, do press enter twice so that the solution looks good. Thank you!

Sravanth C. - 6 years, 1 month ago

Log in to reply

T h a n k y o u v e r y m u c h f o r s u g g e s t i o n ! Thank\ you\ very\ much\ for\ suggestion!

Ikkyu San - 6 years, 1 month ago

Log in to reply

@Ikkyu San welcome!

Sravanth C. - 6 years, 1 month ago

who give you the permission to put or we use or only for either connection . if ab=0 then either a=0 or b=0 but in this case or can't work so replace it with implies inorder to get the logic is correct

Ramez Hindi - 6 years, 1 month ago

I did something similar. Good work.

Fabio Bittar - 6 years, 1 month ago

Where did 9261000 come from?

dina Mohamed - 6 years, 1 month ago

Log in to reply

It's 21 0 3 210^{3} .

Sravanth C. - 6 years, 1 month ago
Chew-Seong Cheong
Apr 26, 2015

a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) = ( a + b ) [ ( a + b ) 2 2 a b a b ] = ( a + b ) [ ( a + b ) 2 3 a b ] 2593080 = 210 ( 21 0 2 3 a b ) a b = 1 3 ( 21 0 2 2593080 210 ) = 44100 12348 3 = 31752 3 = 10584 \begin{aligned} a^3+b^3 & = (a+b)(a^2+b^2-ab) = (a+b)[(a+b)^2-2ab-ab] \\ & = (a+b)[(a+b)^2-3ab] \\ \Rightarrow 2593080 & = 210(210^2 - 3ab) \\ \Rightarrow ab & = \dfrac {1}{3} \left( 210^2 - \dfrac {2593080}{210} \right) = \dfrac {44100-12348}{3} = \dfrac {31752}{3} \\ & = \boxed{10584} \end{aligned}

Moderator note:

Yes, the conventional sum of two cubes identity works too. Nicely done!

Good solution sir! upvoted!

Sravanth C. - 6 years, 1 month ago
Ramez Hindi
Apr 28, 2015

the solution is very simple based on the factorization of a 3 + b 3 {a}^3+{b}^3

so as we know that a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) , keep in your mind we

need a + b a+b and not a b a-b so we will add 2 a b + 2 a b = 0 -2ab+2ab=0 to the second term to get :

a 3 + b 3 = ( a + b ) ( a 2 + 2 a b 2 a b a b + b 2 ) a^3+b^3=(a+b)(a^2+2ab-2ab-ab+b^2)

by using ( a + b ) 2 = a 2 + b 2 + 2 a b {(a+b)}^{2}=a^2+b^2+2ab

we obtain a 3 + b 3 = ( a + b ) ( ( a + b ) 2 3 a b ) a^3+b^3=(a+b)((a+b)^2-3ab)

back word substitution to get :

2593080 = ( 210 ) ( ( 210 ) 2 3 a b ) 2593080=(210)((210)^2-3ab)

thus 12348 = 44100 3 a b 12348=44100-3ab

therefore a b = 12384 44100 3 = 10584 ab=\frac{12384-44100}{-3}=10584

John Lesteя Tan
Apr 28, 2015

a 3 + b 3 = ( a + b ) ( a 2 + 2 a b + b 2 ) a^3 + b^3 = (a+b)(a^2+2ab+b^2)

2593080 = ( a + b ) ( a 2 + 2 a b + b 2 ) 2593080 =(a+b)(a^2+2ab+b^2)

2593080 = ( 120 ) ( a 2 + 2 a b + b 2 ) 2593080= (120)(a^2+2ab+b^2)

12348 = ( a 2 + 2 a b + b 2 ) ( 1 ) 12348= (a^2+2ab+b^2) --- (1)

We know that

( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^2 = a^2+2ab+b^2

a 2 + 2 a b + b 2 = 210 210 = 44100 ( 2 ) a^2+2ab+b^2 = 210*210 = 44100 --- (2)

Use systems of linear Equation on (1) and (2)

3 a b = 31752 3ab = 31752

a b = 10584 ab= 10584

Moderator note:

Concise and correct!

Typo: In lines 1 through 4, you should replace 2 a b 2ab with a b -ab .

Otto Bretscher - 6 years, 1 month ago

Typo: On line 3 replace 120 with 210.

Jesse Nieminen - 4 years, 10 months ago
Gamal Sultan
Apr 29, 2015

a^2 + b^2 + 2 a b = 210^2 ................... (1)

a^2 + b^2- a b = 2593080/210 ..........(2)

(1) - (2)

3 a b = 31752

a b = 10584

Identity: a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2)

2593080 = 210 ( a 2 a b + b 2 ) 2593080=210(a^2-ab+b^2)

2593080 210 = a 2 a b + b 2 \dfrac{2593080}{210}=a^2-ab+b^2

My own derived identity: ( a + b ) 2 3 a b = (a+b)^2 - 3ab= 21 0 2 3 a b \color{#3D99F6}210^2-3ab = a 2 + 2 a b + b 2 3 a b = =a^2+2ab+b^2-3ab= a 2 a b + b 2 \color{#3D99F6}a^2-ab+b^2

Substitute:

2593080 210 = 21 0 2 3 a b \dfrac{2593080}{210}=210^2-3ab

3 a b = 31752 3ab=31752

a b = 10584 \large \color{#D61F06}\boxed{ab=10584}

Verra Yolanda Sy
May 4, 2015

Ideenlehre Aganus
Apr 29, 2015

a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^{3} + b^{3} = (a + b) (a^{2} - ab + b^{2})

2593080 = ( 210 ) ( a 2 a b + b 2 ) 2593080 = (210)(a^{2} - ab + b^{2})

12348 = a 2 a b + b 2 12348 = a^{2} - ab + b^{2}

a b = ( a 2 + b 2 ) 12348 ab = ( a^{2} + b^{2} ) - 12348

In order to solve the problem, you'll need to get the value of a 2 + b 2 a^{2} + b^{2} . We know that,

( a + b ) 2 = a 2 + 2 a b + b 2 (a+b)^{2} = a^{2} + 2ab + b^{2}

44100 = a 2 + 2 a b + b 2 44100 = a^{2} + 2ab + b^{2}

44100 2 a b = a 2 + b 2 44100 - 2ab = a^{2} + b^{2}

Now substitute the value of a 2 + b 2 a^{2} + b^{2} to the equation.

a b = ( 44100 2 a b ) 12348 ab = (44100 - 2ab) - 12348

3 a b = 31752 3ab = 31752

a b = 10584 ab = \boxed{10584}

nicely solved.

arnab pal - 6 years, 1 month ago
Omar El Amrani
Dec 16, 2015

Dk why the number are so big (needed to use a calculator (T-T))

You can do it by hand using long division.

Jesse Nieminen - 4 years, 10 months ago
Tommy Young
Apr 29, 2015

A = 126 and b is 84.

Why cannot a a and b b have other values?

Jesse Nieminen - 4 years, 10 months ago

Log in to reply

Also, this doesn't answer to the question.

Jesse Nieminen - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...