Star in a regular pentagon

Geometry Level 4

In a regular pentagon the diagonals are joined to form a star.

The star occupies approximately what % of the pentagon?


The answer is 47.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 30, 2014

Let us consider one-fifth of the pentagon. Let the center of the pentagon by O O , the side of the pentagon be a a , two adjacent vertices of the pentagon be A A and B B , and the other vertex of the non-shaded triangle be P P .

We note that O A B = 5 4 \angle OAB = 54^\circ and P A B = 3 6 \angle PAB = 36^\circ . And the area of O A B = 1 5 \triangle OAB = \frac {1}{5} of the area of pentagon is given by:

A O A B = 1 2 a ( 1 2 a tan 5 4 ) \quad A_{OAB} = \frac {1}{2} a (\frac {1}{2} a \tan {54^\circ})

Similarly, he area of P A B = 1 5 \triangle PAB = \frac {1}{5} of total non-shaded area is:

A P A B = 1 2 a ( 1 2 a tan 3 6 ) \quad A_{PAB} = \frac {1}{2} a (\frac {1}{2} a \tan {36^\circ})

Therefore, the portion of non-shaded area is:

A O A B A P A B = tan 3 6 tan 5 4 \quad \dfrac {A_{OAB}}{A_{PAB}} = \dfrac {\tan {36^\circ}}{\tan {54^\circ}}

The portion the star occupies:

1 A O A B A P A B = 1 tan 3 6 tan 5 4 = 1 0.726542528 1.37638192 \quad 1- \dfrac {A_{OAB}}{A_{PAB}} = 1 - \dfrac {\tan {36^\circ}}{\tan {54^\circ}} = 1 - \dfrac {0.726542528}{1.37638192}

= 0.472135955 47.2 % \quad \quad \quad \quad \quad \quad = 0.472135955 \approx \boxed {47.2} \%

| AB is the side of the pentagon. M its midpoint. O the center and AO=r. r i g h t d Δ A M O = 1 10 o f t h e P o l y g o n . Δ A M C = 1 10 o f u n s h a d e d a r e a . The angles in the sketch are from pentagon properties. Sides are from trigonometry. A r e a Δ A M C = 1 2 r C o s 5 4 o ( r C o s 5 4 o T a n 3 6 o ) A r e a Δ A M O = 1 2 r C o s 5 4 o r S i n ( 1 8 o + 3 6 o ) . F r a c t i o n o f s t a r = 1 A r e a Δ A M C A r e a Δ A M O = 1 2 r C o s 5 4 o r ( C o s 5 4 o T a n 3 6 o ) 1 2 r C o s 5 4 o r S i n 5 4 o = 1 T a n 3 6 o C o t 5 4 o = 1 ( T a n 3 6 o ) 2 % = 47.2 \text{AB is the side of the pentagon. M its midpoint. O the center}\\\text{and AO=r.}\\right~\angle d ~\Delta~AMO =\dfrac 1 {10} ~of~the~ Polygon.\\\Delta~AMC=\dfrac 1 {10}~ of~ unshaded ~area.\\\text{The angles in the sketch are from pentagon properties.}\\\text{Sides are from trigonometry.}\\Area~\Delta ~AMC= \dfrac 1 2 *rCos54^o*(rCos54^o * Tan36^o) \\Area~\Delta ~AMO=\dfrac 1 2 *rCos54^o*rSin(18^o+36^o).\\ Fraction~~of~star~=1- \dfrac{ Area~\Delta ~AMC}{Area~\Delta ~AMO}\\=\dfrac{\dfrac 1 2 *rCos54^o*r\color{#D61F06}{(Cos54^o*Tan36^o)} }{\dfrac 1 2 *rCos54^o*r\color{#D61F06}{Sin54^o} } \\=1-\dfrac{Tan36^o}{Cot54^o }=1-(Tan36^o)^2\\\%= \Huge 47.2

Ivan Martinez
Nov 29, 2014

Am I suppose to use the calculator??

Yes, to divide tan(36) over tan(54)

Abdulrahman El Shafei - 6 years, 6 months ago

Log in to reply

tg(36°)/tg(54°)=tg(36°) x tg(36°),no need for dividing...

Nikola Djuric - 6 years, 6 months ago

Log in to reply

then what ?

Abdulrahman El Shafei - 6 years, 6 months ago

Log in to reply

@Abdulrahman El Shafei this was good one !! try my "probably this one!!!"

Gaurav Jain - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...