This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
thanks
i didnt get it can u explain it again in detail?
Log in to reply
It is given in the problem that,
x
+
y
=
1
x 3 + y 3 = 2 5
Now, there is a well known expansion/formula for the second equation, namely,
x
3
+
y
3
=
(
x
+
y
)
(
x
2
+
y
2
−
x
y
)
You can easily confirm that it is true by just multiplying out the brackets.
So,
x
3
+
y
3
=
(
x
+
y
)
(
x
2
+
y
2
−
x
y
)
=
2
5
But, it is given that x + y = 1 , so,
( x + y ) ( x 2 + y 2 − x y ) = 2 5
( 1 ) ( x 2 + y 2 − x y ) = 2 5
x 2 + y 2 − x y = 2 5 − − − − ( 1 )
Now,
x + y = 1
⇒ ( x + y ) 2 = 1 2
⇒ x 2 + y 2 + 2 x y = 1 − − − − ( 2 )
Solving ( 1 ) and ( 2 ) for x y and x 2 + y 2 (I hope you know how to solve two equations, if not, just ask and i'll explain it to you),
x 2 + y 2 = 1 7 x y = − 8
Finally,
We need to find out the value of
x
4
+
y
4
...To do this, we just do the following...
x 4 + y 4 = ( x 2 ) 2 + ( y 2 ) 2 = ( x 2 + y 2 ) 2 − 2 x 2 y 2 (If you do not understand the above part, please just ask and i'll explain it to you)
Now, we just substitute the values of
x
2
+
y
2
and (xy) that we just found out,
⇒
x
4
+
y
4
=
(
1
7
)
2
−
2
(
−
8
)
2
=
2
8
9
−
1
2
8
=
1
6
1
Log in to reply
im sorry.. but do you mind explaining the solving for the 1 &2 equation or the solving of two equation.. pl z
Log in to reply
@John Warren Mejico
–
Referring to my comment above,
x
2
+
y
2
−
x
y
=
2
5
−
−
−
−
(
1
)
x
2
+
y
2
+
2
x
y
=
1
−
−
−
−
−
(
2
)
Performing
(
2
)
−
(
1
)
,
3
x
y
=
−
2
4
⇒
x
y
=
−
8
Now, just substitute this value in any one of the equations...Its your choice..either ( 1 ) or ( 2 )
I will substitute the value in ( 1 ) (please remember, you can choose any one of the equations..)
Substituting in
(
1
)
,
x
2
+
y
2
−
(
−
8
)
=
2
5
x
2
+
y
2
+
8
=
2
5
x
2
+
y
2
=
1
7
Hence, we get the 2 values which I wrote in my previous comment.
excellant
that is good.....
What is the value of x and y.
x+y=1, x3+y3=25 or (x+y)(x2-xy+y2)=25 or (x+y)((x+y)2-3xy)=25 or 1((1-3xy)=25 or xy=-8 now x4+y4=(x2)2+(y2)2=(x2+y2)2-2x2y2=((x+y)2-2xy)2-2(-8)2=(1+16)2-128=289-128=161
Problem Loading...
Note Loading...
Set Loading...
x + y = 1 x 3 + y 3 = 2 5
⇒ ( x + y ) ( x 2 + y 2 − x y ) = 2 5 ⇒ x 2 + y 2 − x y = 2 5 − − − − − ( 1 ) Also,
x 2 + y 2 + 2 x y = 1 − − − − − − ( 2 )
Using ( 1 ) and ( 2 ) ,
⇒ x y = − 8 ⇒ x 2 + y 2 = 1 7
Now,
x 4 + y 4 = ( x 2 + y 2 ) 2 − 2 x 2 y 2 = ( 1 7 ) 2 − 2 ( − 8 ) 2 = 1 6 1