x 7 + y 7 + x 4 y 3 + x 3 y 4 x^7+y^7+x^4y^3+x^3y^4

Algebra Level 2

If x + y = 1 x+y=1 and x 2 + y 2 = 2 , x^2+y^2=2, what is the value of x 7 + y 7 + x 4 y 3 + x 3 y 4 ? x^7+y^7+x^4y^3+x^3y^4?

37 4 \frac{37}{4} 33 4 \frac{33}{4} 35 4 \frac{35}{4} 31 4 \frac{31}{4}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anish Puthuraya
Feb 26, 2014

x 7 + y 7 + x 4 y 3 + x 3 y 4 = ( x 3 + y 3 ) ( x 4 + y 4 ) x^7+y^7+x^4y^3+x^3y^4 = \left(x^3+y^3\right)\left(x^4+y^4\right) x 7 + y 7 + x 4 y 3 + x 3 y 4 = ( x + y ) ( x 2 + y 2 x y ) ( ( x 2 + y 2 ) 2 2 x 2 y 2 ) x^7+y^7+x^4y^3+x^3y^4 = \left(x+y\right)\left(x^2+y^2-xy\right)\left(\left(x^2+y^2\right)^2-2x^2y^2\right)

From the given values,
x + y = 1 x+y =1 x 2 + y 2 = 2 x^2+y^2 = 2 x y = 1 2 \Rightarrow xy = \frac{-1}{2}

Using all these values,
x 7 + y 7 + x 4 y 3 + x 3 y 4 = 5 2 7 2 = 35 4 x^7+y^7+x^4y^3+x^3y^4 = \frac{5}{2}\cdot\frac{7}{2} = \boxed{\frac{35}{4}}

wooow

Tootie Frootie - 7 years, 3 months ago

Log in to reply

Are you JB?

Anish Puthuraya - 7 years, 3 months ago

Log in to reply

hahhahaha kind of something like that hehehe..

Tootie Frootie - 7 years, 3 months ago

Log in to reply

@Tootie Frootie I hate JB though. But then again, I do respect women, so... :3

Prasun Biswas - 6 years, 5 months ago

i did in the same way....

Sanjeev Prasad - 7 years, 3 months ago

yes the same way is mine

abdul lah - 7 years, 3 months ago
Daniel Liu
Feb 28, 2014

First, note that ( x + y ) 2 = x 2 + 2 x y + y 2 = 1 x y = 1 2 (x+y)^2=x^2+2xy+y^2=1\implies xy=-\dfrac{1}{2}

Now let us define x , y x,y as the roots of a quadratic. This quadratic, by Vieta's, is x 2 x 1 2 x^2-x-\dfrac{1}{2} .

Now, notice that x 7 + y 7 + x 4 y 3 + x 3 y 4 = ( x 3 + y 3 ) ( x 4 + y 4 ) x^7+y^7+x^4y^3+x^3y^4=(x^3+y^3)(x^4+y^4) . We want to find the values of x 3 + y 3 x^3+y^3 and x 4 + y 4 x^4+y^4 .

Now define P n = x n + y n P_n=x^n+y^n .

By Newton's Sums, P 3 P 2 1 2 P 1 = 0 P_3-P_2-\dfrac{1}{2}P_1=0 ; we substitute P 1 = 1 P_1=1 and P 2 = 2 P_2=2 (from the conditions x + y = 1 x+y=1 and x 2 + y 2 = 2 x^2+y^2=2 ) to get P 3 = 5 2 P_3=\dfrac{5}{2} .

By Newton's Sums, P 4 P 3 1 2 P 2 = 0 P_4-P_3-\dfrac{1}{2}P_2=0 ; we substitute P 2 = 2 P_2=2 and P 3 = 5 2 P_3=\dfrac{5}{2} to get P 4 = 7 2 P_4=\dfrac{7}{2} .

We want to find P 3 P 4 P_3P_4 , which is simply 5 2 7 2 = 35 4 \dfrac{5}{2}\cdot\dfrac{7}{2}=\boxed{\dfrac{35}{4}} and we are done. \Box .

Sidenote: using Newton's Sums was a little bit overkill on this problem, but if they asked you to compute x 12 + y 12 + x 5 y 7 + x 7 y 5 x^{12}+y^{12}+x^5y^7+x^7y^5 , then this strategy would be much easier.

Adrian Delgado
Mar 4, 2014

We know that x + y = 1 x+y=1 and x 2 + y 2 = 2 x^2+y^2=2

x 7 + y 7 + x 4 y 3 + x 3 y 4 = = x 4 ( x 3 + y 3 ) + y 4 ( x 3 + y 3 ) = = ( x 4 + y 4 ) ( x 3 + y 3 ) x^7+y^7+x^4y^3+x^3y^4=\\ =x^4(x^3+y^3)+y^4(x^3+y^3)=\\ =(x^4+y^4)(x^3+y^3)

Note that x + y = 1 ( x + y ) 2 = 1 x 2 + y 2 + 2 x y = 1 2 x y + 2 = 1 x y = 1 2 x+y=1\\ (x+y)^2=1\\ x^2+y^2+2xy=1\\ 2xy+2=1\\ xy= - \dfrac{1}{2}

Now we calculate each of the factors:

( x 2 + y 2 ) ( x + y ) = 2 1 x 3 + y 3 + x 2 y + x y 2 = 2 x 3 + y 3 + x y ( x + y ) = 2 x 3 + y 3 + ( 1 2 1 ) = 2 x 3 + y 3 1 2 = 2 x 3 + y 3 = 5 2 (x^2+y^2)(x+y)=2\cdot 1\\ x^3+y^3+x^2y+xy^2=2\\ x^3+y^3+xy(x+y)=2\\ x^3+y^3+(-\dfrac{1}{2}\cdot 1)=2\\ x^3+y^3-\dfrac{1}{2}=2\\ x^3+y^3=\dfrac{5}{2}

( x 3 + y 3 ) ( x + y ) = 5 2 1 x 4 + y 4 + x 3 y + x y 3 = 5 2 x 4 + y 4 + x y ( x 2 + y 2 ) = 5 2 x 4 + y 4 + ( 1 2 2 ) = 5 2 x 4 + y 4 1 = 5 2 x 4 + y 4 = 5 2 + 1 x 4 + y 4 = 7 2 (x^3+y^3)(x+y)=\dfrac{5}{2}\cdot 1\\ x^4+y^4+x^3y+xy^3=\dfrac{5}{2}\\ x^4+y^4+xy(x^2+y^2)=\dfrac{5}{2}\\ x^4+y^4+(-\dfrac{1}{2}\cdot 2)=\dfrac{5}{2}\\ x^4+y^4-1=\dfrac{5}{2}\\ x^4+y^4=\dfrac{5}{2}+1\\ x^4+y^4=\dfrac{7}{2}

So

x 7 + y 7 + x 4 y 3 + x 3 y 4 = ( x 4 + y 4 ) ( x 3 + y 3 ) = 7 2 5 2 = 35 4 x^7+y^7+x^4y^3+x^3y^4=(x^4+y^4)(x^3+y^3)=\dfrac{7}{2}\cdot \dfrac{5}{2}=\dfrac{35}{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...