∣ ∣ ∣ ∣ ∣ ∣ 2 0 1 4 2 0 1 4 2 0 1 7 2 0 1 7 2 0 2 0 2 0 2 0 2 0 1 5 2 0 1 5 2 0 1 8 2 0 1 8 2 0 2 1 2 0 2 1 2 0 1 6 2 0 1 6 2 0 1 9 2 0 1 9 2 0 2 2 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣ Find the remainder when the determinant above is divided by 5.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Absolutely correct Approach
Log in to reply
You can use \ begin{vmatrix} \ end{vmatrix} for determinant.
Log in to reply
Thankyou sir. I will remember it.
Log in to reply
@Md Zuhair – I learnt it from here
Select the symbols and the codes will be shown below.
Problem Loading...
Note Loading...
Set Loading...
∣ ∣ ∣ ∣ ∣ ∣ 2 0 1 4 2 0 1 4 2 0 1 7 2 0 1 7 2 0 2 0 2 0 2 0 2 0 1 5 2 0 1 5 2 0 1 8 2 0 1 8 2 0 2 1 2 0 2 1 2 0 1 6 2 0 1 6 2 0 1 9 2 0 1 9 2 0 2 2 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣ ≡ ∣ ∣ ∣ ∣ ∣ ∣ ( 2 0 1 5 − 1 ) 2 0 1 4 ( 2 0 1 5 + 2 ) 2 0 1 7 2 0 2 0 2 0 2 0 2 0 1 5 2 0 1 5 ( 2 0 2 0 − 2 ) 2 0 1 8 ( 2 0 2 0 + 1 ) 2 0 2 1 ( 2 0 1 5 + 1 ) 2 0 1 6 ( 2 0 2 0 − 1 ) 2 0 1 9 ( 2 0 2 0 + 2 ) 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣ (mod 5) ≡ ∣ ∣ ∣ ∣ ∣ ∣ ( − 1 ) 2 0 1 4 2 2 0 1 7 0 0 ( − 2 ) 2 0 1 8 1 2 0 2 1 1 2 0 1 6 ( − 1 ) 2 0 1 9 2 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣ (mod 5) ≡ ∣ ∣ ∣ ∣ ∣ ∣ 1 2 2 0 1 7 0 0 2 2 0 1 8 1 1 − 1 2 2 0 2 2 ∣ ∣ ∣ ∣ ∣ ∣ (mod 5) ≡ 2 2 0 4 0 + 2 2 0 1 7 + 1 (mod 5) Since g cd ( 2 , 5 ) = 1 , Euler’s theorem applies. ≡ 2 2 0 4 0 mod ϕ ( 5 ) + 2 2 0 1 7 mod ϕ ( 5 ) + 1 (mod 5) Euler’s totient function ϕ ( 5 ) = 4 ≡ 2 2 0 4 0 mod 4 + 2 2 0 1 7 mod 4 + 1 (mod 5) ≡ 2 0 + 2 1 + 1 (mod 5) ≡ 1 + 2 + 1 (mod 5) ≡ 4 (mod 5)