Alphys Won't Help You This Time!

Algebra Level 2

Two trains, Train A \text{Train A} , and Train B \text{Train B} , simultaneously depart Station A \text{Station A} and Station B \text{Station B} . Station A, and Station B are 252.5 252.5 miles apart from each other. Train A is moving at 124.7 m p h 124.7mph towards Station B, and Train B is moving at 253.5 m p h 253.5mph towards Station A.

If both trains departed at 10 : 00 10:00 AM and it is now 10 : 08 10:08 , how much longer until both trains pass each other? Round to three decimal places and answer in minutes.


Whoever wants to submit a report for this problem can go here \color{#333333}\text{Whoever wants to submit a report for this problem can go here}


The answer is 32.058.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I couldn't be bothered to solve using code so I just did it the old-fashioned way:

üzgünüm ama cevabı yazamadım çünkü bunu kodla nasıl yapacağımı bilmiyorum

Ömer Ertürk - 5 months, 1 week ago

Log in to reply

Bunun için kod kullanmanız gerekmez; bunu çözmek için sadece temel kinematik kullanın

Anonymous1 Assassin - 5 months, 1 week ago

Log in to reply

I don't know much about the code

Ömer Ertürk - 5 months, 1 week ago

Log in to reply

@Ömer Ertürk All good; why don't you try out the python course here on Brilliant?

Anonymous1 Assassin - 5 months ago

Log in to reply

@Anonymous1 Assassin I think there are 2 reasons ;

1st reason: I don't like coding

2nd reason : I spend a lot of time on this site so I cannot study my classes.

Ömer Ertürk - 5 months ago
Tom Engelsman
Jan 9, 2021

Let Train A's distance be x x miles, and Train B's be 252.5 x 252.5 - x miles to their meeting point. If 8 8 minutes (or 2 15 \frac{2}{15} hours) have elapsed, then the remaining time to encounter, call it t t hours, can be calculated per following system of equations:

x t + 2 / 15 = 124.7 \frac{x}{t + 2/15} = 124.7 (i)

252.5 x t + 2 / 15 = 253.5 \frac{252.5-x}{t + 2/15} = 253.5 (ii)

Solving (i) for x x and substituting into (ii) gives us:

252.5 124.7 ( t + 2 / 15 ) t + 2 / 15 = 253.5 t = 30311 56730 60 = 32.058 \frac{252.5 - 124.7(t + 2/15)}{t + 2/15} = 253.5 \Rightarrow t = \frac{30311}{56730} \cdot 60 = \boxed{32.058} minutes.

Dario48 Spinnato
Nov 8, 2020

i solved it with a python program, for the file: https://www.dropbox.com/s/phh0yuiqjqran8t/AlphysWillnotHelpYouThisTimeProblem.py?dl=0

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...