You gotta think of it in some other way

Algebra Level 3

If 8 x + 15 y = 120 8x+15y=120 , the minimum value of x 2 + y 2 \sqrt{x^2+y^2} can be expressed as a b \dfrac {a}{b} where a a and b b are coprime positive integers, find a + b a+b .


The answer is 137.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ishan Singh
Sep 22, 2015

8 x + 15 y = 120 8x + 15y = 120 represents a straight line. x 2 + y 2 \sqrt{x^2 + y^2} represents the distance of any point on that line from the origin. To minimize it, we take the perpendicular distance that is 120 8 2 + 1 5 2 = 120 17 \dfrac{120}{\sqrt{8^2 + 15^2}} = \dfrac{120}{17}

a + b = 137 \therefore a+b = \boxed{137}

did it the same way

Samarth Agarwal - 5 years, 8 months ago
Chew-Seong Cheong
Sep 22, 2015

Using Cauchy Schwarz inequality, we have:

( 8 x + 15 y ) 2 ( 8 2 + 1 5 2 ) ( x 2 + y 2 ) 12 0 2 1 7 2 ( x 2 + y 2 ) x 2 + y 2 12 0 2 1 7 2 x 2 + y 2 120 17 a + b = 120 + 17 = 137 \begin{aligned} (8x+15y)^2 & \le (8^2+15^2)(x^2+y^2) \\ 120^2 & \le 17^2 (x^2 + y^2) \\ x^2 + y^2 & \ge \frac{120^2}{17^2} \\ \Rightarrow \sqrt{x^2+y^2} & \ge \frac{120}{17} \\ \\ \Rightarrow a+b & = 120 + 17 = \boxed{137} \end{aligned}

Nice solution. Very succinct. +1

Extension: Generalise the minimum value of x 2 + y 2 \sqrt{x^2+y^2} for any equation of a line i.e. a x + b y = c ax+by=c with proof.

Sharky Kesa - 5 years, 8 months ago

Log in to reply

If a x + b y = c ax+by=c , then using Cauchy Schwarz inequality, we have:

( a x + b y ) 2 ( a 2 + b 2 ) ( x 2 + y 2 ) c 2 ( a 2 + b 2 ) ( x 2 + y 2 ) x 2 + y 2 c 2 a 2 + b 2 x 2 + y 2 c a 2 + b 2 \begin{aligned} (ax+by)^2 & \le (a^2+b^2)(x^2+y^2) \\ c^2 & \le (a^2+b^2)(x^2+y^2) \\ x^2 + y^2 & \ge \frac{c^2}{a^2+b^2} \\ \Rightarrow \sqrt{x^2+y^2} & \ge \frac{c}{\sqrt{a^2+b^2}} \end{aligned}

Chew-Seong Cheong - 5 years, 8 months ago

Log in to reply

What if , if we take x=15cos^2(A) and y=8sin^2(A) . Then by RMS>=AM . Minimum value comes out to be 23/sqrt2

Aakash Khandelwal - 5 years, 8 months ago

Log in to reply

@Aakash Khandelwal But why x = 15 cos 2 θ x=15 \cos^2 \theta and y = 6 sin 2 θ y = 6 \sin^2 \theta ?

Chew-Seong Cheong - 5 years, 8 months ago

(Old style calculus way)

Yugesh Kothari
Sep 24, 2015

A very simple way to look at it would be to consider two vectors a=8i+15j and b=xi+yj.

Now, a.b=|a||b|Cos(ω). => |b| = 120/17 sec ω. For minimum case, sec ω =1. Hence the answer is 120+17=137.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...