You only have 2 Minutes(2)

Calculus Level 4

f ( x ) = 1 / e tan x t 1 + t 2 d t + 1 / e cot x 1 t ( 1 + t 2 ) d t \large f( x ) =\int _{ 1/e }^{ \tan { x } }{ \dfrac { t }{ 1+{ t }^{ 2 } } \, dt } +\int _{1/e }^{ \cot x }{ \dfrac { 1 }{ t( 1+{ t }^{ 2 } ) } \, dt }

Find the value of f ( e 2 ) f\left(\dfrac{e}{2}\right) .

Clarification : e 2.71828 e \approx 2.71828 denotes the Euler's number .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Jun 25, 2016

\begin{aligned} f(x) & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt + \color{#3D99F6}{\int_\frac 1e^{\cot x} \frac 1{t(1+t^2)} dt} \quad \quad \small \color{#3D99F6}{\text{Let }u = \frac 1t \implies du = - \frac 1{t^2} dt \implies \frac {du}{u^2} = - dt} \\ & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt \color{#3D99F6}{-\int_e^{\tan x} \frac {u\cdot \frac 1{u^2}}{1+\frac 1{u^2}} du} \\ & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt \color{#D61F06}{+} \int^\color{#D61F06}{e}_\color{#D61F06}{\tan x} \frac u{1+u^2} du \\ & = \int_\frac 1e^e \frac t{1+t^2} dt \\ & = \frac 12 \ln (1+t^2) \bigg|_\frac 1e^e \\ & = \frac 12 \ln \left(\frac {1+e^2}{1+\frac 1{e^2}} \right) \\ & = \frac 12 \ln \left( e^2 \right) \\ & = \boxed{1} \end{aligned}

Rishi Sharma
Jun 25, 2016

f ( x ) = 1 e tan x t 1 + t 2 d t + 1 e c o t x 1 t ( 1 + t 2 ) d t f\left( x \right) =\int _{ \frac { 1 }{ e } }^{ \tan { x } }{ \frac { t }{ 1+{ t }^{ 2 } } dt } +\int _{ \frac{1}{e} }^{ cotx }{ \frac { 1 }{ t\left( 1+{ t }^{ 2 } \right) } dt } hence using Leibniz integral rule . ( e [ 0 , π 2 ] \because \quad e\in \left[ 0,\frac { \pi }{ 2 } \right] ) d d x f ( x ) = tan x 1 + tan x 2 ( d d x { tan x } ) + 1 cot x ( 1 + cot x 2 ) ( d d x { cot x } ) \frac { d }{ dx } f\left( x \right) =\frac { \tan { x } }{ 1+{ \tan { x } }^{ 2 } } \left( \frac { d }{ dx } \left\{ \tan { x } \right\} \right) +\frac { 1 }{ \cot { x } \left( 1+{ \cot { x } }^{ 2 } \right) } \left( \frac { d }{ dx } \left\{ \cot { x } \right\} \right) We get f ( x ) = tan x sec 2 x sec 2 x + 1 cot x ( csc 2 x ) csc 2 x = 0 f^{ ' }\left( x \right) =\frac { \tan { x } }{ \sec ^{ 2 }{ x } } \sec ^{ 2 }{ x } +\frac { -1 }{ \cot { x } (\csc ^{ 2 }{ x } ) } \csc ^{ 2 }{ x } =0 Or f ( x ) f\left( x\right) is a constant function.So f ( e 2 ) = f ( π 4 ) = 1 e 1 t 1 + t 2 d t + 1 e 1 1 t ( 1 + t 2 ) d t = 1 e e t 1 + t 2 d t = 1 f\left( \frac{e}{2}\right)=f\left( \frac { \pi }{ 4 } \right) =\int _{ \frac { 1 }{ e } }^{ 1 }{ \frac { t }{ 1+{ t }^{ 2 } } dt } +\int _{ \frac { 1 }{ e } }^{ 1 }{ \frac { 1 }{ t\left( 1+{ t }^{ 2 } \right) } dt } =\int _{ \frac { 1 }{ e } }^{ e }{ \frac { t }{ 1+{ t }^{ 2 } } dt=\boxed { 1 } } \\

Moderator note:

Great approach to show that the function is constant.

Even if it isn't constant, sometimes understanding the derivative makes it easier to calculate the function.

Super it came in my exam

sujit kumar - 4 years, 11 months ago

Log in to reply

Which one???

Rishi Sharma - 4 years, 11 months ago

Did the same! :)

Prakhar Bindal - 4 years, 11 months ago
Rishabh Jain
Jun 25, 2016

f ( x ) = 1 e tan x t 1 + t 2 d t R + 1 e cot x 1 t ( 1 + t 2 ) d t I f\left( x \right) =\underbrace{\int _{ \frac { 1 }{ e } }^{ \tan { x } }{ \frac { t }{ 1+{ t }^{ 2 } } dt } }_{\mathcal R}+\underbrace{\int _{ \frac { 1 }{ e } }^{ \cot x }{ \frac { 1 }{ t\left( 1+{ t }^{ 2 } \right) } dt }}_{\mathcal I}

2 R = 1 e tan x 2 t 1 + t 2 d t = [ ln ( 1 + t 2 ) ] 1 / e tan x = ln ( 1 + tan 2 x ) ln ( 1 + 1 e 2 ) 2\mathcal R= \displaystyle\int _{ \frac { 1 }{ e } }^{ \tan { x } }{ \frac {2 t }{ 1+{ t }^{ 2 } } dt }=\left[\ln(1+t^2)\right]_{1/e}^{\tan x}=\ln(1+\tan^2x)-\ln\left(1+\dfrac1{e^2}\right)

2 I = 1 e cot x 2 t 3 ( 1 + 1 t 2 ) d t = [ ln ( 1 + 1 t 2 ) ] 1 / e cot x = ln ( 1 + tan 2 x ) ln ( 1 + e 2 ) -2\mathcal I =\displaystyle\int _{ \frac { 1 }{ e } }^{ \cot x }{ \frac { \frac{-2}{t^3} }{ \left( 1+\frac1{{ t }^{ 2 } }\right) } dt } =\left[\ln\left(1+\frac1{t^2}\right)\right]_{1/e}^{\cot x}=\ln(1+\tan^2 x)-\ln(1+e^2)

Subtracting and dividing by 2, we get f ( x ) = R + I = 1 2 ln e 2 = 1 f(x)=\mathcal R+\mathcal I=\dfrac 12\ln e^2=1

Hence, f ( e 2 ) = 1 \large f\left(\frac{e}{2}\right) =\boxed 1

i bet you did it mentally :P . nice solution..+1

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Yep... :-) .... BTW don't you sleep at night coz you wrote that comment somewhere around 3-4 AM :-P

Rishabh Jain - 4 years, 11 months ago

Log in to reply

You are very observant😉. I study till 4 am and wake up at 11 am

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

@Sabhrant Sachan Lol.... Going good.. :-)

Rishabh Jain - 4 years, 11 months ago

nice one sir rishabh cool :)

Pawan pal - 4 years, 11 months ago

Log in to reply

Thanks.... But no need to 'sir' me... :-p

Rishabh Jain - 4 years, 11 months ago

Ehhh....when you calculate R \mathcal R and I \mathcal I , both 1 2 \dfrac{1}{2} and 1 2 -\dfrac{1}{2} disappear midway

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Shit... I don't know where they went without my permission... :-)... But I forced them to come back and now they have appeared in the LHS... Thanks to them. Lol

Rishabh Jain - 4 years, 11 months ago

Log in to reply

Then the RHS of I \mathcal I should be ln ( 1 + tan 2 x ) ln ( 1 + e 2 ) \ln(1+\tan^2x)-\ln(1+e^2) since you took away the -

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

@Hung Woei Neoh Done .... :-)

Rishabh Jain - 4 years, 11 months ago

1 / e t a n ( x ) t 1 + t 2 d t = A l e t 1 + t 2 = y , t h e n t . d t = d y / 2 A = 1 2 1 / e t a n ( x ) d y y = 1 2 l n ( sec 2 x e 2 e 2 + 1 ) A l s o 1 / e c o t ( x ) d t t ( 1 + t 2 ) = B = 1 / e c o t ( x ) t . d t t 2 ( 1 + t 2 ) l e t 1 + t 2 = y , t h e n t . d t = d y / 2 B = 1 2 1 / e c o t ( x ) d y ( y 1 ) y A p p l y p a r t i a l f r a c t i o n s t e c h n i q u e , A s s u m e t w o c o n s t a n t s C a n d D s u c h t h a t B = C y + D y 1 ( 2 ) B = 1 2 ( C 1 / e c o t ( x ) d y y + D 1 / e c o t ( x ) d y y 1 ) B = 1 2 ( C . l n ( csc 2 ( x ) . e 2 e 2 + 1 ) + D . l n ( cot 2 ( x ) . e 2 ) ) f r o m ( 1 ) , C ( y 1 ) + D y = 1 ( e q u a t i n g n u m e r a t o r s ) w e g e t C = D C = 1 , h e n c e C = 1 , D = 1 w e g e t , B = 1 2 l n ( cos 2 ( x ) . e 2 ) h e n c e , f ( x ) = A + B = 1 2 l n ( e 2 ) = 1 , h e n c e f ( x ) i s a c o n s t a n t f u n c t i o n f ( e 2 ) = 1 \int _{ 1/e }^{ tan(x) }{ \frac { t }{ 1+{ t }^{ 2 } } } dt\quad =\quad A\\ let\quad 1+{ t }^{ 2 }=y,\quad then\quad t.dt=dy/2\\ A=\frac { 1 }{ 2 } \int _{ 1/e }^{ tan(x) }{ \frac { dy }{ y } } =\quad \frac { 1 }{ 2 } ln(\frac { \sec ^{ 2 }{ x } { e }^{ 2 } }{ { e }^{ 2 }+1 } )\\ Also\\ \int _{ 1/e }^{ cot(x) }{ \frac { dt }{ t(1+{ t }^{ 2 }) } } =\quad B\quad =\quad \int _{ 1/e }^{ cot(x) }{ \frac { t.dt }{ { t }^{ 2 }(1+{ t }^{ 2 }) } } \\ let\quad 1+{ t }^{ 2 }=y,\quad then\quad t.dt=dy/2\\ B\quad =\quad \frac { 1 }{ 2 } \int _{ 1/e }^{ cot(x) }{ \frac { dy }{ (y-1)y } } \\ Apply\quad partial\quad fractions\quad technique,\quad Assume\quad two\quad constants\quad C\quad and\quad D\quad such\quad that\\ B\quad =\quad \frac { C }{ y } +\frac { D }{ y-1 } \quad (2)\\ B\quad =\quad \frac { 1 }{ 2 } (C\int _{ 1/e }^{ cot(x) }{ \frac { dy }{ y } } +\quad D\int _{ 1/e }^{ cot(x) }{ \frac { dy }{ y-1 } } )\\ B\quad =\quad \frac { 1 }{ 2 } (C.ln(\frac { \csc ^{ 2 }{ (x).{ e }^{ 2 } } }{ { e }^{ 2 }+1 } )\quad +\quad D.ln(\cot ^{ 2 }{ (x).{ e }^{ 2 } } ))\\ from\quad (1),\quad C(y-1)\quad +\quad Dy\quad =\quad 1\quad (equating\quad numerators)\\ we\quad get\quad C=-D\quad C=-1,\quad hence\quad C=-1,D=1\\ we\quad get,\\ B\quad =\quad \frac { 1 }{ 2 } ln(\cos ^{ 2 }{ (x).{ e }^{ 2 } } )\\ hence,\quad f(x)\quad =\quad A\quad +\quad B\quad =\quad \frac { 1 }{ 2 } \quad ln({ e }^{ 2 })\quad =\quad 1,\quad hence\quad f(x)\quad is\quad a\quad constant\quad function\\ \boxed { f(\frac { e }{ 2 } )\quad =\quad 1 }

Hung Woei Neoh
Jun 26, 2016

f ( x ) = 1 e tan x t 1 + t 2 d t + 1 e cot x 1 t ( 1 + t 2 ) d t f(x) =\displaystyle\int_{\frac{1}{e}}^{\tan x}\dfrac{t}{1+t^2}dt+\int_{\frac{1}{e}}^{\cot x}\dfrac{1}{t(1+t^2)}dt

First, split the fraction on the right integral into partial fractions

1 t ( 1 + t 2 ) = a t + b t + c 1 + t 2 a ( 1 + t 2 ) + t ( b t + c ) = 1 ( a + b ) t 2 + c t + a = 1 a = 1 , c = 0 , a + b = 0 b = a = 1 1 t ( 1 + t 2 ) = 1 t t 1 + t 2 \dfrac{1}{t(1+t^2)}=\dfrac{a}{t} + \dfrac{bt+c}{1+t^2}\\ a(1+t^2)+t(bt+c)=1\\ (a+b)t^2+ct+a=1\\ a=1,\;c=0,\;a+b=0\implies b=-a=-1\\ \implies\dfrac{1}{t(1+t^2)}=\dfrac{1}{t} - \dfrac{t}{1+t^2}

Therefore,

f ( x ) = 1 e tan x t 1 + t 2 d t + 1 e cot x ( 1 t t 1 + t 2 ) d t = 1 e tan x t 1 + t 2 d t + 1 e cot x 1 t d t 1 e cot x t 1 + t 2 d t = 1 e tan x t 1 + t 2 d t + cot x 1 e t 1 + t 2 d t + 1 e cot x 1 t d t = 1 2 cot x tan x 2 t 1 + t 2 d t + 1 e cot x 1 t d t = 1 2 [ ln ( 1 + t 2 ) ] cot x tan x + [ ln x ] 1 e cot x = 1 2 ( ln ( 1 + tan 2 x ) ln ( 1 + cot 2 x ) ) + ( ln ( cot x ) ln ( 1 e ) ) = 1 2 ( ln ( sec 2 x ) ln ( csc 2 x ) ) + ( ln ( cot x ) ln ( e 1 ) ) = 1 2 ( ln ( sec 2 x csc 2 x ) ) + ( ln ( cot x ) + 1 ) = 1 2 ( ln ( sin x cos x ) 2 ) + ln ( cot x ) + 1 = ln ( tan x ) + ln ( 1 tan x ) + 1 = ln ( tan x ( 1 tan x ) ) + 1 = ln 1 + 1 = 0 + 1 = 1 f(x) = \displaystyle\int_{\frac{1}{e}}^{\tan x}\dfrac{t}{1+t^2}dt+\int_{\frac{1}{e}}^{\cot x}\left(\dfrac{1}{t} - \dfrac{t}{1+t^2}\right)dt\\ = \displaystyle\int_{\frac{1}{e}}^{\tan x}\dfrac{t}{1+t^2}dt+\int_{\frac{1}{e}}^{\cot x}\dfrac{1}{t} dt-\int_{\frac{1}{e}}^{\cot x} \dfrac{t}{1+t^2}dt\\ =\displaystyle\int_{\frac{1}{e}}^{\tan x}\dfrac{t}{1+t^2}dt\color{#3D99F6}{+\int_{\cot x}^{\frac{1}{e}}} \dfrac{t}{1+t^2}dt+\int_{\frac{1}{e}}^{\cot x}\dfrac{1}{t} dt\\ =\color{#D61F06}{\dfrac{1}{2}}\displaystyle\color{#3D99F6}{\int_{\cot x}^{\tan x}} \dfrac{\color{#D61F06}{2}t}{1+t^2}dt+\int_{\frac{1}{e}}^{\cot x}\dfrac{1}{t} dt\\ =\dfrac{1}{2}\Big[\ln(1+t^2)\Big]_{\cot x}^{\tan x} + \Big[\ln x\Big]_{\frac{1}{e}}^{\cot x}\\ =\dfrac{1}{2}\Big(\ln(\color{#20A900}{1+\tan^2 x})-\ln(\color{#EC7300}{1+\cot^2 x})\Big)+\Big(\ln(\cot x)-\ln\left(\dfrac{1}{e}\right)\Big)\\ =\dfrac{1}{2}\Big(\ln(\color{#20A900}{\sec^2 x})-\ln(\color{#EC7300}{\csc^2 x})\Big)+\Big(\ln(\cot x)-\ln\left(e^{-1}\right)\Big)\\ =\dfrac{1}{2}\Big(\ln\left(\dfrac{\sec^2 x}{\csc^2 x}\right)\Big)+\Big(\ln(\cot x)+1\Big)\\ =\dfrac{1}{2}\Big(\ln\left(\dfrac{\sin x}{\cos x}\right)^2\Big)+\ln(\cot x)+1\\ =\ln(\tan x)+\ln\left(\dfrac{1}{\tan x}\right)+1\\ =\ln\left(\tan x\left(\dfrac{1}{\tan x}\right)\right)+1\\ =\ln1 + 1\\ =0+1\\ =1

f ( e 2 ) = 1 \implies f\left(\dfrac{e}{2}\right)=\boxed{1}


Trigonometric identities used :

  1. 1 + tan 2 x = sec 2 x \color{#20A900}{1+\tan^2 x = \sec^2x}
  2. 1 + cot 2 x = csc 2 x \color{#EC7300}{1+\cot^2 x = \csc^2 x}
Arjen Vreugdenhil
Jun 27, 2016

The integrands differ only in the placement of t t (numerator vs. denominator). This gave me the idea to rewrite the second integral with u = 1 / t u = 1/t . Thus: 1 t ( 1 + t 2 ) d t = u 1 + ( 1 u ) 2 d u u 2 = u 1 + u 2 d u . \frac{1}{t(1+t^2)} dt = \frac{u}{1 + (\tfrac 1u)^2} \frac {-du}{u^2} = -\frac{u}{1 + u^2} du. Thus the second integral becomes (accounting for the negative sign by flipping the boundaries) 1 e cot x 1 t ( 1 + t 2 ) d t = tan x e u 1 + u 2 d u , \int_{\frac 1 e}^{\cot x} \frac 1{t(1 + t^2)} dt = \int_{\tan x}^{e} \frac u {1 + u^2} du, and at this point it is clear that the two integrals can be combined into one. Replacing u u by t t in our last equation, we simply get f ( x ) = 1 e tan x t 1 + t 2 d t + tan x e t 1 + t 2 d t = 1 e e t 1 + t 2 d t . f(x) = \int_{\frac 1 e}^{\tan x} \frac t {1 + t^2} dt + \int_{\tan x}^{e} \frac t {1 + t^2} dt = \int_{\frac 1 e}^{e} \frac t {1 + t^2} dt. The variable x x no longer occurs, so this is a constant function. The integral is easily solved (noting that the numerator is the derivative of the denominator) f ( x ) = 1 e e t 1 + t 2 d t = 1 2 ln ( 1 + t 2 ) 1 / e e = 1 2 ( ln ( 1 + e 2 ) ln ( 1 + e 2 ) ) = 1 2 ln ( 1 + e 2 1 + e 2 ) = 1 2 ln e 2 = 1 . f(x) = \int_{\frac 1 e}^{e} \frac t {1 + t^2} dt = \left.\frac 1 2 \ln (1 + t^2)\right|_{1/e}^e = \frac 12\left(\ln (1 + e^2) - \ln (1 + e^{-2})\right) \\ = \frac12 \ln\left(\frac{1 + e^2}{1 + e^{-2}}\right) = \frac12 \ln e^2 = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...