f ( x ) = ∫ 1 / e tan x 1 + t 2 t d t + ∫ 1 / e cot x t ( 1 + t 2 ) 1 d t
Find the value of f ( 2 e ) .
Clarification : e ≈ 2 . 7 1 8 2 8 denotes the Euler's number .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x ) = ∫ e 1 tan x 1 + t 2 t d t + ∫ e 1 c o t x t ( 1 + t 2 ) 1 d t hence using Leibniz integral rule . ( ∵ e ∈ [ 0 , 2 π ] ) d x d f ( x ) = 1 + tan x 2 tan x ( d x d { tan x } ) + cot x ( 1 + cot x 2 ) 1 ( d x d { cot x } ) We get f ′ ( x ) = sec 2 x tan x sec 2 x + cot x ( csc 2 x ) − 1 csc 2 x = 0 Or f ( x ) is a constant function.So f ( 2 e ) = f ( 4 π ) = ∫ e 1 1 1 + t 2 t d t + ∫ e 1 1 t ( 1 + t 2 ) 1 d t = ∫ e 1 e 1 + t 2 t d t = 1
Great approach to show that the function is constant.
Even if it isn't constant, sometimes understanding the derivative makes it easier to calculate the function.
Super it came in my exam
Did the same! :)
f ( x ) = R ∫ e 1 tan x 1 + t 2 t d t + I ∫ e 1 cot x t ( 1 + t 2 ) 1 d t
2 R = ∫ e 1 tan x 1 + t 2 2 t d t = [ ln ( 1 + t 2 ) ] 1 / e tan x = ln ( 1 + tan 2 x ) − ln ( 1 + e 2 1 )
− 2 I = ∫ e 1 cot x ( 1 + t 2 1 ) t 3 − 2 d t = [ ln ( 1 + t 2 1 ) ] 1 / e cot x = ln ( 1 + tan 2 x ) − ln ( 1 + e 2 )
Subtracting and dividing by 2, we get f ( x ) = R + I = 2 1 ln e 2 = 1
Hence, f ( 2 e ) = 1
i bet you did it mentally :P . nice solution..+1
Log in to reply
Yep... :-) .... BTW don't you sleep at night coz you wrote that comment somewhere around 3-4 AM :-P
Log in to reply
You are very observant😉. I study till 4 am and wake up at 11 am
nice one sir rishabh cool :)
Ehhh....when you calculate R and I , both 2 1 and − 2 1 disappear midway
Log in to reply
Shit... I don't know where they went without my permission... :-)... But I forced them to come back and now they have appeared in the LHS... Thanks to them. Lol
Log in to reply
Then the RHS of I should be ln ( 1 + tan 2 x ) − ln ( 1 + e 2 ) since you took away the −
∫ 1 / e t a n ( x ) 1 + t 2 t d t = A l e t 1 + t 2 = y , t h e n t . d t = d y / 2 A = 2 1 ∫ 1 / e t a n ( x ) y d y = 2 1 l n ( e 2 + 1 sec 2 x e 2 ) A l s o ∫ 1 / e c o t ( x ) t ( 1 + t 2 ) d t = B = ∫ 1 / e c o t ( x ) t 2 ( 1 + t 2 ) t . d t l e t 1 + t 2 = y , t h e n t . d t = d y / 2 B = 2 1 ∫ 1 / e c o t ( x ) ( y − 1 ) y d y A p p l y p a r t i a l f r a c t i o n s t e c h n i q u e , A s s u m e t w o c o n s t a n t s C a n d D s u c h t h a t B = y C + y − 1 D ( 2 ) B = 2 1 ( C ∫ 1 / e c o t ( x ) y d y + D ∫ 1 / e c o t ( x ) y − 1 d y ) B = 2 1 ( C . l n ( e 2 + 1 csc 2 ( x ) . e 2 ) + D . l n ( cot 2 ( x ) . e 2 ) ) f r o m ( 1 ) , C ( y − 1 ) + D y = 1 ( e q u a t i n g n u m e r a t o r s ) w e g e t C = − D C = − 1 , h e n c e C = − 1 , D = 1 w e g e t , B = 2 1 l n ( cos 2 ( x ) . e 2 ) h e n c e , f ( x ) = A + B = 2 1 l n ( e 2 ) = 1 , h e n c e f ( x ) i s a c o n s t a n t f u n c t i o n f ( 2 e ) = 1
f ( x ) = ∫ e 1 tan x 1 + t 2 t d t + ∫ e 1 cot x t ( 1 + t 2 ) 1 d t
First, split the fraction on the right integral into partial fractions
t ( 1 + t 2 ) 1 = t a + 1 + t 2 b t + c a ( 1 + t 2 ) + t ( b t + c ) = 1 ( a + b ) t 2 + c t + a = 1 a = 1 , c = 0 , a + b = 0 ⟹ b = − a = − 1 ⟹ t ( 1 + t 2 ) 1 = t 1 − 1 + t 2 t
Therefore,
f ( x ) = ∫ e 1 tan x 1 + t 2 t d t + ∫ e 1 cot x ( t 1 − 1 + t 2 t ) d t = ∫ e 1 tan x 1 + t 2 t d t + ∫ e 1 cot x t 1 d t − ∫ e 1 cot x 1 + t 2 t d t = ∫ e 1 tan x 1 + t 2 t d t + ∫ cot x e 1 1 + t 2 t d t + ∫ e 1 cot x t 1 d t = 2 1 ∫ cot x tan x 1 + t 2 2 t d t + ∫ e 1 cot x t 1 d t = 2 1 [ ln ( 1 + t 2 ) ] cot x tan x + [ ln x ] e 1 cot x = 2 1 ( ln ( 1 + tan 2 x ) − ln ( 1 + cot 2 x ) ) + ( ln ( cot x ) − ln ( e 1 ) ) = 2 1 ( ln ( sec 2 x ) − ln ( csc 2 x ) ) + ( ln ( cot x ) − ln ( e − 1 ) ) = 2 1 ( ln ( csc 2 x sec 2 x ) ) + ( ln ( cot x ) + 1 ) = 2 1 ( ln ( cos x sin x ) 2 ) + ln ( cot x ) + 1 = ln ( tan x ) + ln ( tan x 1 ) + 1 = ln ( tan x ( tan x 1 ) ) + 1 = ln 1 + 1 = 0 + 1 = 1
⟹ f ( 2 e ) = 1
Trigonometric identities used :
The integrands differ only in the placement of t (numerator vs. denominator). This gave me the idea to rewrite the second integral with u = 1 / t . Thus: t ( 1 + t 2 ) 1 d t = 1 + ( u 1 ) 2 u u 2 − d u = − 1 + u 2 u d u . Thus the second integral becomes (accounting for the negative sign by flipping the boundaries) ∫ e 1 cot x t ( 1 + t 2 ) 1 d t = ∫ tan x e 1 + u 2 u d u , and at this point it is clear that the two integrals can be combined into one. Replacing u by t in our last equation, we simply get f ( x ) = ∫ e 1 tan x 1 + t 2 t d t + ∫ tan x e 1 + t 2 t d t = ∫ e 1 e 1 + t 2 t d t . The variable x no longer occurs, so this is a constant function. The integral is easily solved (noting that the numerator is the derivative of the denominator) f ( x ) = ∫ e 1 e 1 + t 2 t d t = 2 1 ln ( 1 + t 2 ) ∣ ∣ ∣ ∣ 1 / e e = 2 1 ( ln ( 1 + e 2 ) − ln ( 1 + e − 2 ) ) = 2 1 ln ( 1 + e − 2 1 + e 2 ) = 2 1 ln e 2 = 1 .
Problem Loading...
Note Loading...
Set Loading...
\begin{aligned} f(x) & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt + \color{#3D99F6}{\int_\frac 1e^{\cot x} \frac 1{t(1+t^2)} dt} \quad \quad \small \color{#3D99F6}{\text{Let }u = \frac 1t \implies du = - \frac 1{t^2} dt \implies \frac {du}{u^2} = - dt} \\ & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt \color{#3D99F6}{-\int_e^{\tan x} \frac {u\cdot \frac 1{u^2}}{1+\frac 1{u^2}} du} \\ & = \int_\frac 1e^{\tan x} \frac t{1+t^2} dt \color{#D61F06}{+} \int^\color{#D61F06}{e}_\color{#D61F06}{\tan x} \frac u{1+u^2} du \\ & = \int_\frac 1e^e \frac t{1+t^2} dt \\ & = \frac 12 \ln (1+t^2) \bigg|_\frac 1e^e \\ & = \frac 12 \ln \left(\frac {1+e^2}{1+\frac 1{e^2}} \right) \\ & = \frac 12 \ln \left( e^2 \right) \\ & = \boxed{1} \end{aligned}