You may need help of complex numbers

( n 3 ) + ( n 7 ) + ( n 11 ) + = ? \large \dbinom {n}{3} + \dbinom {n}{7} + \dbinom {n}{11} + \cdots = \, ?

1 2 ( 2 n 1 2 n / 2 sin n π 4 ) \frac{1}{2} {( 2^{n-1} - 2^ {n/2} \sin \frac {n\pi }{4})} None of these choices 1 2 ( 2 n 1 2 2 n sin n π 4 ) \frac{1}{2} {( 2^{n-1} - 2^ {2n} \sin \frac {n\pi }{4})} 1 4 ( 2 n 1 2 n sin n π 4 ) \frac{1}{4} {( 2^{n-1} - 2^ {n} \sin \frac {n\pi }{4})} 1 2 ( 2 n 1 2 n sin n π 4 ) \frac{1}{2} {( 2^{n-1} - 2^ {n} \sin \frac {n\pi }{4})}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ivan Koswara
Dec 31, 2015

Let i = 1 i = \sqrt{-1} . Recall that the binomial theorem says, for any complex x x and non-negative integer n n ,

( 1 + x ) n = k = 0 n ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k

By the convention that ( n k ) = 0 \binom{n}{k} = 0 when k > n k > n , we can change the upper bound:

( 1 + x ) n = k = 0 ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^\infty \binom{n}{k} x^k

And now we can break it into four separate series according to the value of k m o d 4 k \mod 4 :

( 1 + x ) n = k = 0 ( n 4 k ) x 4 k + k = 0 ( n 4 k + 1 ) x 4 k + 1 + k = 0 ( n 4 k + 2 ) x 4 k + 2 + k = 0 ( n 4 k + 3 ) x 4 k + 3 \displaystyle (1+x)^n = \sum_{k=0}^\infty \binom{n}{4k} x^{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} x^{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} x^{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} x^{4k+3}

Substituting x = 1 x = 1 ,

( 1 + 1 ) n = k = 0 ( n 4 k ) 1 4 k + k = 0 ( n 4 k + 1 ) 1 4 k + 1 + k = 0 ( n 4 k + 2 ) 1 4 k + 2 + k = 0 ( n 4 k + 3 ) 1 4 k + 3 = k = 0 ( n 4 k ) + k = 0 ( n 4 k + 1 ) + k = 0 ( n 4 k + 2 ) + k = 0 ( n 4 k + 3 ) \displaystyle\begin{aligned} (1+1)^n &= \sum_{k=0}^\infty \binom{n}{4k} 1^{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} 1^{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} 1^{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} 1^{4k+3} \\ &= \sum_{k=0}^\infty \binom{n}{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} \end{aligned}

Similarly, we can do the same for x = i , 1 , i x = i, -1, -i :

( 1 + i ) n = k = 0 ( n 4 k ) i 4 k + k = 0 ( n 4 k + 1 ) i 4 k + 1 + k = 0 ( n 4 k + 2 ) i 4 k + 2 + k = 0 ( n 4 k + 3 ) i 4 k + 3 = k = 0 ( n 4 k ) + i k = 0 ( n 4 k + 1 ) k = 0 ( n 4 k + 2 ) i k = 0 ( n 4 k + 3 ) ( 1 1 ) n = k = 0 ( n 4 k ) ( 1 ) 4 k + k = 0 ( n 4 k + 1 ) ( 1 ) 4 k + 1 + k = 0 ( n 4 k + 2 ) ( 1 ) 4 k + 2 + k = 0 ( n 4 k + 3 ) ( 1 ) 4 k + 3 = k = 0 ( n 4 k ) k = 0 ( n 4 k + 1 ) + k = 0 ( n 4 k + 2 ) k = 0 ( n 4 k + 3 ) ( 1 i ) n = k = 0 ( n 4 k ) ( i ) 4 k + k = 0 ( n 4 k + 1 ) ( i ) 4 k + 1 + k = 0 ( n 4 k + 2 ) ( i ) 4 k + 2 + k = 0 ( n 4 k + 3 ) ( i ) 4 k + 3 = k = 0 ( n 4 k ) i k = 0 ( n 4 k + 1 ) k = 0 ( n 4 k + 2 ) + i k = 0 ( n 4 k + 3 ) \displaystyle\begin{aligned} (1+i)^n &= \sum_{k=0}^\infty \binom{n}{4k} i^{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} i^{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} i^{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} i^{4k+3} \\ &= \sum_{k=0}^\infty \binom{n}{4k} + i \sum_{k=0}^\infty \binom{n}{4k+1} - \sum_{k=0}^\infty \binom{n}{4k+2} - i \sum_{k=0}^\infty \binom{n}{4k+3} \\ (1-1)^n &= \sum_{k=0}^\infty \binom{n}{4k} (-1)^{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} (-1)^{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} (-1)^{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} (-1)^{4k+3} \\ &= \sum_{k=0}^\infty \binom{n}{4k} - \sum_{k=0}^\infty \binom{n}{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} - \sum_{k=0}^\infty \binom{n}{4k+3} \\ (1-i)^n &= \sum_{k=0}^\infty \binom{n}{4k} (-i)^{4k} + \sum_{k=0}^\infty \binom{n}{4k+1} (-i)^{4k+1} + \sum_{k=0}^\infty \binom{n}{4k+2} (-i)^{4k+2} + \sum_{k=0}^\infty \binom{n}{4k+3} (-i)^{4k+3} \\ &= \sum_{k=0}^\infty \binom{n}{4k} - i \sum_{k=0}^\infty \binom{n}{4k+1} - \sum_{k=0}^\infty \binom{n}{4k+2} + i \sum_{k=0}^\infty \binom{n}{4k+3} \end{aligned}

Now, observe that ( 1 + 1 ) n + i ( 1 + i ) n ( 1 1 ) n i ( 1 i ) n (1+1)^n + i(1+i)^n - (1-1)^n - i(1-i)^n add up to exactly 4 k = 0 ( n 4 k + 3 ) 4 \sum_{k=0}^\infty \binom{n}{4k+3} . (The trick is that we convert the coefficients so that they become the sum of roots of unity, except for the ( n 4 k + 3 ) \sum \binom{n}{4k+3} one which now becomes all 1 1 's.)

Additionally, let E ( θ ) = cos θ + i sin θ E(\theta) = \cos \theta + i \sin \theta . ( E E is more known as cis \text{cis} , but we also have E ( θ ) = e i θ E(\theta) = e^{i \theta} . Also cis \text{cis} is much harder to type in LaTeX.) Note that E ( θ ) n = E ( n θ ) E(\theta)^n = E(n\theta) . Note that ( 1 + i ) n = ( 2 E ( π 4 ) ) n = 2 n / 2 E ( n π 4 ) (1+i)^n = \left( \sqrt{2} E \left( \frac{\pi}{4} \right) \right)^n = 2^{n/2} E \left( \frac{n\pi}{4} \right) , and likewise ( 1 i ) n = ( 2 E ( π 4 ) ) n = 2 n / 2 E ( n π 4 ) (1-i)^n = \left( \sqrt{2} E \left( \frac{-\pi}{4} \right) \right)^n = 2^{n/2} E \left( \frac{-n\pi}{4} \right) . Thus,

k = 0 ( n 4 k + 3 ) = 1 4 ( ( 1 + 1 ) n + i ( 1 + i ) n ( 1 1 ) n i ( 1 i ) n ) = 1 4 ( 2 n + i 2 n / 2 E ( n π 4 ) 0 i 2 n / 2 E ( n π 4 ) ) = 1 4 ( 2 n + i 2 n / 2 ( E ( n π 4 ) E ( n π 4 ) ) ) = 1 4 ( 2 n + i 2 n / 2 ( ( cos n π 4 + i sin n π 4 ) ( cos n π 4 + i sin n π 4 ) ) ) = 1 4 ( 2 n + i 2 n / 2 ( cos n π 4 + i sin n π 4 cos n π 4 + i sin n π 4 ) ) = 1 4 ( 2 n + i 2 n / 2 2 i sin n π 4 ) = 1 2 ( 2 n 1 2 n / 2 sin n π 4 ) \displaystyle\begin{aligned} \sum_{k=0}^\infty \binom{n}{4k+3} &= \frac{1}{4} ((1+1)^n + i(1+i)^n - (1-1)^n - i(1-i)^n) \\ &= \frac{1}{4} \left( 2^n + i \cdot 2^{n/2} E \left( \frac{n\pi}{4} \right) - 0 - i \cdot 2^{n/2} E \left( \frac{-n\pi}{4} \right) \right) \\ &= \frac{1}{4} \left( 2^n + i \cdot 2^{n/2} \cdot \left( E \left( \frac{n\pi}{4} \right) - E \left( \frac{-n\pi}{4} \right) \right) \right) \\ &= \frac{1}{4} \left( 2^n + i \cdot 2^{n/2} \cdot \left( \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) - \left( \cos \frac{-n\pi}{4} + i \sin \frac{-n\pi}{4} \right) \right) \right) \\ &= \frac{1}{4} \left( 2^n + i \cdot 2^{n/2} \cdot \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} - \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) \right) \\ &= \frac{1}{4} \left( 2^n + i \cdot 2^{n/2} \cdot 2i \cdot \sin \frac{n\pi}{4} \right) \\ &= \boxed{ \frac{1}{2} \left( 2^{n-1} - 2^{n/2} \sin \frac{n\pi}{4} \right) } \end{aligned}

Moderator note:

Great approach using the roots of unity to find the sum via cancelling of terms.

Why is this stuff level 3 ?

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

What level do you expect? It is fluctuating between 3 and 4. ;-)

Sachin Vishwakarma - 5 years, 5 months ago

Log in to reply

Looks like Level 5 to me ! Maybe this is actually easier for most people, but I find it very difficult.

Venkata Karthik Bandaru - 5 years, 5 months ago

Log in to reply

@Venkata Karthik Bandaru Most multiple choice questions won't reach level 5 because people can just guess. There's 20% chance of getting it correct by pure guessing. If you think a bit, you can realize that three of the options actually won't give integral answers ( sin n π 4 = ± 2 2 \sin \frac{n\pi}{4} = \pm \frac{\sqrt{2}}{2} for odd n n , and multiplying by 2 n 2^n and what else won't remove the 2 \sqrt{2} ), so you're left with two choices. The fact that one formula survives makes it more likely that it's the answer (instead of the anticlimactic "none of these choices").

Ivan Koswara - 5 years, 5 months ago

Log in to reply

@Ivan Koswara Initially I thought to put none of these as answer. ;-)

Sachin Vishwakarma - 5 years, 5 months ago

Nice approach. :)

Sachin Vishwakarma - 5 years, 5 months ago
Deepak Kumar
Dec 31, 2015

Made typical use of induction to eliminate option using n=3 &n=4 which leads to the correct option within a minute!

Can you show that it's true by induction? I doubt it's that straightforward. Thanks.

Pi Han Goh - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...