You only have 2 minutes(1)

Calculus Level 4

0 x t 2 1 + t 4 d t = 2 x 1 \large \int _0^x \frac {t^2 }{1+t^4} \ dt =2x-1 Find the number of solutions of the equation above for x ( 0 , 1 ] x \in ( 0, 1 ] .


This is a problem from JEE-Advanced 2016 Paper-1.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishi Sharma
May 25, 2016

C o n s i d e r f ( x ) = 0 x t 2 1 + t 4 d x 2 x + 1 F i r s t N o t i c e t h a t x 2 1 + x 4 = 1 x 2 + 1 x 2 a n d H e n c e b y u s i n g A M G M w e c a n s a y x 2 + 1 x 2 2 o r x 2 1 + x 4 1 2 . . . . . . . . . . . . . . . . . ( i ) a l s o 0 1 x 2 1 + x 4 d x 0 1 1 2 d x = > 0 1 x 2 1 + x 4 d x 1 2 . . . . . . . . . . . . . . ( i i ) N o w f ( x ) = x 2 1 + x 4 2 h e n c e f ( x ) 0 f r o m ( i ) S o f ( x ) i s a m o n t o n i c a l l y d e c r e a s i n g f u n c t i o n x N o w f ( 0 ) = 1 a n d f ( 1 ) < 0 u s i n g ( i i ) H e n c e t h e r e i s o n l y o n e z e r o o f f ( x ) i n [ 0 , 1 ] Consider\quad f\left( x \right) =\quad \int _{ 0 }^{ x }{ \frac { { t }^{ 2 } }{ 1+{ t }^{ 4 } } dx } -2x+1\\ First\quad Notice\quad that\quad \quad \frac { { x }^{ 2 } }{ 1+{ x }^{ 4 } } =\frac { 1 }{ { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } } \quad and\quad Hence\quad by\quad using\quad AM-GM\\ we\quad can\quad say\quad { x }^{ 2 }+\frac { 1 }{ { x }^{ 2 } } \ge 2\quad or\quad \frac { { x }^{ 2 } }{ 1+{ x }^{ 4 } } \le \frac { 1 }{ 2 } .................(i)\\ also\quad \int _{ 0 }^{ 1 }{ \frac { { x }^{ 2 } }{ 1+{ x }^{ 4 } } dx } \le \int _{ 0 }^{ 1 }{ \frac { 1 }{ 2 } dx } \quad =>\int _{ 0 }^{ 1 }{ \frac { { x }^{ 2 } }{ 1+{ x }^{ 4 } } dx } \le \frac { 1 }{ 2 } ..............(ii)\\ Now\quad f^{ ' }\left( x \right) =\frac { { x }^{ 2 } }{ 1+{ x }^{ 4 } } -2\quad hence\quad f^{ ' }\left( x \right) \le 0\quad from\quad (i)\\ So\quad f\left( x \right) \quad is\quad a\quad montonically\quad decreasing\quad function\quad \forall x\in \Re \\ Now\quad f\left( 0 \right) =1\quad and\quad f\left( 1 \right) <0\quad using\quad (ii)\\ Hence\quad there\quad is\quad only\quad one\quad zero\quad of\quad f\left( x \right) \quad in\quad \left[ 0,1 \right]

Moderator note:

Great approach! What motivated constructing f ( x ) f(x) and looking at f ( x ) f'(x) ?

Great approach! What motivated constructing f ( x ) f(x) and looking at f ( x ) f'(x) ?

Calvin Lin Staff - 5 years ago

Log in to reply

Sir, why cant we apply differentiation at both sides and use Leibnitz? Then it yeilds answer as 0

Md Zuhair - 3 years, 2 months ago

Log in to reply

That's a very common misconception that people make.

Think about it and see why we never "apply differentiation at both sides" in such cases.

Hint: If we want to solve x 2 = x x^2 = x , is it equivalent to 2 x = 1 2x = 1 ?

Calvin Lin Staff - 3 years, 2 months ago

Log in to reply

@Calvin Lin Oh true sir! Sorry for that mistake! :D

Md Zuhair - 3 years, 2 months ago

I can't believe i did it the same exact way.

Ayush Agarwal - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...