You said that you want to practice summation problems! Didn't you?

Calculus Level 3

lim n m = 1 n [ 3 ( 1 + m n ) 2 1 n ] = ? \Large \displaystyle \lim_{n \to \infty} \sum^{n}_{m=1} \left[3 \left(1+\dfrac{m}{n}\right)^{2}\dfrac{1}{n} \right]= \ ? \


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Jan 24, 2018

S = lim n m = 0 n [ 3 ( 1 + m n ) 2 1 n ] \large \displaystyle S = \lim _{n \rightarrow \infty} \sum_{m=0}^{n} \left [ 3 \left ( 1 + \frac{m}{n} \right ) ^2 \frac{1}{n} \right ]

This turns out to be a Riemann Sum , whose limit is an integral. The conversion formula is:

lim n m = 0 n f ( a + b a n m ) b a n = a b f ( x ) d x \large \displaystyle \lim _{n \rightarrow \infty} \sum_{m=0}^{n} f \left ( a + \frac{b-a}{n} \cdot m \right ) \frac{b-a}{n} = \int_a^b f(x) dx

In our case, a = 0 a=0 and b = 1 b=1 , so:

S = 0 1 3 ( 1 + x ) 2 d x \large \displaystyle S = \int_0^1 3 (1 +x)^2 dx

S = ( 3 x + 3 x 2 + x 3 ) 0 1 \large \displaystyle S = (3x + 3x^2 + x^3) \Bigg |_0^1

S = 7 \color{#3D99F6} \boxed{ \large \displaystyle S = 7}

3x + 3x^2 + x2 should be 3x + 3x^2 + x^3

Vijay Simha - 1 year, 8 months ago

Log in to reply

Thanks, I've fixed it.

Guilherme Niedu - 1 year, 8 months ago
Akshat Sharda
Oct 8, 2015

lim n m = 1 n 3 ( 1 + m n ) 2 1 n lim n 3 n m = 1 n ( 1 + m n ) 2 lim n 3 n m = 1 n ( 1 + 2 m n + m 2 n 2 ) lim n 1 3 ( m = 1 n 1 + 2 n ( m = 1 n m ) + 1 n 2 ( m = 1 n m 2 ) ) lim n 1 3 ( n + 2 n ( n ( n + 1 ) 2 ) + 1 n 2 ( n ( n + 1 ) ( 2 n + 1 ) 6 ) ) lim n 3 n ( 2 n + 1 + 2 n 2 + 3 n + 1 6 n ) lim n ( 6 + 3 n + 6 n 2 + 9 n + 3 6 n 2 ) lim n ( 6 + 3 n + 1 + 3 2 n + 1 2 n 2 ) 6 + 0 + 1 + 0 + 0 = 7 \displaystyle \lim_{n \to \infty} \sum^{n}_{m=1} 3 \left(1+\frac{m} {n}\right)^{2}\dfrac{1}{n} \\ \displaystyle \lim_{n \to \infty} \frac{3}{n} \sum^{n}_{m=1} \left(1+\frac{m}{n}\right)^{2} \\ \displaystyle \lim_{n \to \infty} \frac{3}{n} \sum^{n}_{m=1} \left(1+\frac{2m}{n}+\frac{m^{2}}{n^{2}}\right) \\ \displaystyle \lim_{n \to \infty} \frac{1}{3} \left( \sum^{n}_{m=1} 1+\frac{2}{n} \left(\sum^{n}_{m=1}m\right)+\frac{1}{n^{2}} \left(\sum^{n}_{m=1}m^{2}\right)\right) \\ \displaystyle \lim_{n \to \infty} \frac{1}{3} \left(n+\frac{2}{n} \left(\frac{n(n+1)}{2}\right)+\frac{1}{n^{2}} \left(\frac{n(n+1)(2n+1)}{6}\right)\right) \\ \displaystyle \lim_{n \to \infty}\frac{3}{n} \left(2n+1+\frac{2n^{2}+3n+1}{6n}\right) \\ \displaystyle \lim_{n \to \infty} \left(6+\frac{3}{n}+\frac{6n^{2}+9n+3}{6n^{2}}\right) \\ \displaystyle \lim_{n \to \infty}\left(6+\frac{3}{n}+1+\frac{3}{2n}+\frac{1}{2n^{2}}\right) \\ \Rightarrow 6+0+1+0+0=\boxed{7}

One line solution: Convert to a Riemann Sum.

Pi Han Goh - 5 years, 8 months ago

Log in to reply

Yes, that's the actual value of solving these type of problems.
Akshat , in which class you are studying?

Akhil Bansal - 5 years, 8 months ago

Log in to reply

1 0 t h 10^{th} class .

Akshat Sharda - 5 years, 8 months ago

Log in to reply

@Akshat Sharda No need to worry,
You'll learn Riemann Sum in class X I I t h XII^{th}

Akhil Bansal - 5 years, 8 months ago

Please elaborate.

Akshat Sharda - 5 years, 8 months ago

Log in to reply

3 ( 1 + m / n ) 2 1 / n = 0 1 3 ( 1 + x ) 2 d x = 7 \sum3(1 + m/n)^2 * 1/n = \int_0^1 3(1+x)^2 dx = 7 .

See the third example here .

Pi Han Goh - 5 years, 8 months ago

Log in to reply

@Pi Han Goh Thank you !! I learned something new today.

Akshat Sharda - 5 years, 8 months ago

Log in to reply

@Akshat Sharda No problem. A follow up question is to show that the coefficient of the leading coefficient of the polynomial of 1 n + 2 n + + m n 1^n + 2^n + \ldots + m^n is 1 n + 1 \frac 1{n+1} . Use Riemann Sums to get the answer (of course, this is not the only possible method, but it's the most simplest method).

Pi Han Goh - 5 years, 8 months ago

@Pi Han Goh I think you forgot the limit.

Aditya Agarwal - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...