The Zero Constraint

Algebra Level 3

1 a 2 + b 2 c 2 + 1 a 2 b 2 + c 2 + 1 b 2 a 2 + c 2 \large \dfrac1{a^2 + b^2 - c^2} + \dfrac1{a^2 - b^2 + c^2} + \dfrac1{b^2-a^2+c^2}

If a , b a,b and c c are non-zero such that a + b + c = 0 a+b+c=0 , find the value of the expression above.

-1 0 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Viki Zeta
Sep 1, 2016

a + b + c = 0 a + b = c ( a + b ) 2 = ( c ) 2 a 2 + b 2 + 2 a b = c 2 a 2 + b 2 c 2 = 2 a b ... 1 also; b + c = a b 2 + c 2 + 2 b c = a 2 b 2 a 2 + c 2 = 2 b c ... 2 and; c + a = b c 2 + a 2 + 2 a c = b 2 a 2 b 2 + c 2 = 2 a c ... 3 Now, using 1 , 2 , 3 1 a 2 + b 2 c 2 + 1 a 2 b 2 + c 2 + 1 b 2 a 2 + c 2 = 1 2 a b + 1 2 a c + 1 2 b c = a + b + c 2 a b c = 0 2 a b c = 0 a + b + c = 0 \\ \implies a + b = -c \\ (a+b)^2 = (-c)^2 \\ a^2 + b^2 + 2ab = c^2 \\ a^2 + b^2 - c^2 = -2ab \text{ ... } \fbox{1}\\ \text{also;} \\ b+c = -a\\ b^2 + c^2 + 2bc = a^2 \\ b^2 - a^2 + c^2 = -2bc \text{ ... } \fbox{2}\\ \text{and;} \\ c+a = -b \\ c^2 + a^2 + 2ac = b^2 \\ a^2 - b^2 + c^2 = -2ac \text{ ... } \fbox{3} \\ \text{Now, using } \fbox{1}, \fbox{2}, \fbox{3} \\ \dfrac{1}{a^2+b^2-c^2} + \dfrac{1}{a^2-b^2+c^2} + \dfrac{1}{b^2-a^2+c^2} \\ = \dfrac{1}{-2ab} + \dfrac{1}{-2ac} + \dfrac{1}{-2bc} \\ = \dfrac{a + b + c}{-2abc} \\ = \dfrac{0}{-2abc} = 0

If we solve it in this way, the answer cannot be zero

1/(a^2 + (b-c)(b+c) ) + 1/( (a-b)(a+b) + c^2) + 1/ ( (b-a)(b+a) + c^2)

=1/(a^2 + (b-c)(b+c) ) + 1/( (a-b)(a+b) + c^2) - 1/( (a-b)(b+a) + c^2)

=1/(a^2 + b^2 - c^2) + 0 = 1/(-2ab) Since , a^2 + b^2 - c^2 = -2ab

In the question it is given that a, b, c are non-zero.

So 1/(-2ab) has some integer value.

I am confused, so tell what is wrong in solving the question in this way?

Nashita Rahman - 4 years, 9 months ago

Log in to reply

Only values of a,b,c must be non zero. a,b,c can be integers. And even if they are outside out doesn't affect the condition. How did you put '-' in 2nd step?

Viki Zeta - 4 years, 9 months ago

Log in to reply

In the 2nd step, I took '-' common from (b-a) , so the minus sign came out it became (a-b)

Nashita Rahman - 4 years, 9 months ago

Log in to reply

@Nashita Rahman ( a b ) ( b a ) = a b a 2 b 2 + a b = b 2 a 2 . (a-b)(b-a) = ab - a^2 - b^2 +ab = -b^2 - a^2. So, it would give 2ab than -2ab

Viki Zeta - 4 years, 9 months ago

Log in to reply

@Viki Zeta You are not getting what I am trying to say

1/( c^2 + (a-b)(a+b) ) = - 1/( c^2 + (b-a)(b+a) ) using this I got the 2nd step!!

Nashita Rahman - 4 years, 9 months ago

Log in to reply

@Nashita Rahman Simplify it. You won't get -2ab but 1 2 a b \dfrac{-1}{2ab}

Viki Zeta - 4 years, 9 months ago

Log in to reply

@Viki Zeta Yes we will get 1/(-2ab) , I never said that we will get -2ab. So if we solve the problem in this way, the answer cannot be zero as 'a' & 'b' are non-zero!

Nashita Rahman - 4 years, 9 months ago

@Viki Zeta No it wouldn't. You typoed the last bit, should be a 2 b 2 + 2 a b -a^2-b^2+2ab .

Sharky Kesa - 4 years, 9 months ago

X = 1 a 2 + b 2 c 2 + 1 a 2 b 2 + c 2 + 1 b 2 a 2 + c 2 = 1 a 2 + ( b c ) ( b + c ) + 1 c 2 + ( a b ) ( a + b ) + 1 b 2 + ( c a ) ( c + a ) = 1 a 2 + ( b c ) ( a + b + c 0 a ) + 1 c 2 + ( a b ) ( a + b + c 0 c ) + 1 b 2 + ( c a ) ( a + b + c 0 b ) = 1 a 2 a ( b c ) + 1 c 2 c ( a b ) + 1 b 2 b ( c a ) = 1 a ( a b + c ) + 1 c ( a + b + c ) + 1 b ( a + b c ) = 1 a ( a + b + c 0 2 b ) + 1 c ( a + b + c 0 2 a ) + 1 b ( a + b + c 0 2 c ) = 1 2 ( 1 a b + 1 c a + 1 b c ) = 1 2 ( a + b + c 0 a b c ) = 0 \begin{aligned} X & = \frac 1{a^2+b^2-c^2} + \frac 1{a^2-b^2+c^2} + \frac 1{b^2-a^2+c^2} \\ & = \frac 1{a^2+(b-c)(b+c)} + \frac 1{c^2+(a-b)(a+b)} + \frac 1{b^2+(c-a)(c+a)} \\ & = \frac 1{a^2+(b-c)(\cancel{a+b+c}^0-a)} + \frac 1{c^2+(a-b)(\cancel{a+b+c}^0-c)} + \frac 1{b^2+(c-a)(\cancel{a+b+c}^0-b)} \\ & = \frac 1{a^2 - a(b-c)} + \frac 1{c^2 - c(a-b)} + \frac 1{b^2 - b(c-a)} \\ & = \frac 1{a(a-b+c)} +\frac 1{c(-a+b+c)} + \frac 1{b(a+b-c)} \\ & = \frac 1{a(\cancel{a+b+c}^0-2b)} + \frac 1{c(\cancel{a+b+c}^0-2a)} + \frac 1{b(\cancel{a+b+c}^0-2c)} \\ & = -\frac 12 \left( \frac 1{ab} + \frac 1{ca} + \frac 1{bc} \right) \\ & = -\frac 12 \left( \frac {\cancel{a+b+c}^0}{abc} \right) \\ & = \boxed{0} \end{aligned}

Nice solution! +1

Viki Zeta - 4 years, 9 months ago
Rocco Dalto
Sep 15, 2016

Let a + b + c = 0 {\bf a + b + c = 0 }

a 2 + b 2 c 2 = ( a + b + c ) ( a + b c ) 2 a b = 2 a b {\bf a^2 + b^2 - c^2 = (a + b + c)(a + b - c) -2ab = -2ab }

a 2 b 2 + c 2 = ( a + c + b ) ( a + c b ) 2 a c = 2 a c {\bf a^2 - b^2 + c^2 = (a + c + b)(a + c - b) -2ac = -2ac }

b 2 a 2 + c 2 = ( b + c + a ) ( b + c a ) 2 b c = 2 b c {\bf b^2 -a^2 +c^2 = (b + c + a)(b + c - a) -2bc = -2bc }

1 2 ( 1 a b + 1 a c + 1 b c ) = {\bf \implies \frac{-1}{2} * (\frac{1}{ab} + \frac{1}{ac} +\frac{1}{bc}) = }

1 2 ( a b c 2 + a c b 2 + b c a 2 a 2 b 2 c 2 ) = {\bf \frac{-1}{2} * (\frac{abc^2 + acb^2 + bca^2}{a^2b^2c^2}) = }

( a b c ) ( a + b + c ) 2 a 2 b 2 c 2 = {\bf \frac{(-abc) * (a + b + c)}{2a^2b^2c^2} = }

( a + b + c ) 2 a b c = 0 {\bf \frac{-(a + b + c)}{2abc} = 0 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...